Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Publication year range
1.
Article in German | MEDLINE | ID: mdl-38959949

ABSTRACT

BACKGROUND: In 2016, a new method was described to treat the painful impingement syndrome of the DRUJ: decompression corrective osteotomy of the distal radius. Clinical symptoms are based on a positive compression test; pain occurs with weight-bearing on the forearm. This phenomenon is seen in conjunction with a deformed sigmoid notch together with ulna minus-variance, which leads to increased tension in the distal oblique bundle of the interosseous membrane. The etiology of the condition can be either congenital, post-traumatic, or iatrogenic. Through the proposed osteotomy, decompression in the DRUJ is achieved. This study summarises the results of these surgical procedures performed in our hand centre exclusively in cases of congenital origin. PATIENTS UND METHODS: Remodelling of the DRUJ is achieved through the shortening of the distal radius together with closed wedge osteotomy. Relief of the interosseous membrane is accomplished by ulnar translation of the radial shaft. This study only included patients with congenital incongruency in the DRUJ. The results were evaluated using a visual analogue scale (VAS) and the Krimmer Wrist Score and by measuring the preoperative and postoperative range of motion as well as grip strength. RESULTS: Within 11 years, 45 procedures were performed with our method on 38 patients, of which 17 were treated on the right side, 14 on the left side, and 7 bilaterally. In cases of bilateral incongruency, only the symptomatic side was treated. The statistical evaluation showed a significant reduction of pain on the VAS from 7.2 to 2 (p<0.001). No significant changes were seen in the range of motion (p=0.812). The Krimmer Wrist Score showed good to excellent results in almost 90% of cases. CONCLUSION: If the indication criteria are met, contraindications are avoided and the osteotomy is correctly performed, this technique leads to an improvement of patients' functionality and quality of life. From a preventive viewpoint, the influence on the progression of the degenerative changes is yet to be demonstrated in further studies. At any rate, this is a safe procedure, which leaves the path open for other possible options.

2.
Inorg Chem ; 62(49): 19871-19886, 2023 Dec 11.
Article in English | MEDLINE | ID: mdl-38032353

ABSTRACT

Nowadays, the production of acetaldehyde heavily relies on the petroleum industry. Developing new catalysts for the ethanol dehydrogenation process that could sustainably substitute current acetaldehyde production methods is highly desired. Among the ethanol dehydrogenation catalysts, copper-based materials have been intensively studied. Unfortunately, the Cu-based catalysts suffer from sintering and coking, which lead to rapid deactivation with time-on-stream. Phosphorus doping has been demonstrated to diminish coking in methanol dehydrogenation, fluid catalytic cracking, and ethanol-to-olefin reactions. This work reports a pioneering application of the well-characterized copper phosphinate complexes as molecular precursors for copper-based ethanol dehydrogenation catalysts enriched with phosphate groups (Cu-phosphate/SiO2). Three new catalysts (CuP-1, CuP-2, and CuP-3), prepared by the deposition of complexes {Cu(SAAP)}n (1), [Cu6(BSAAP)6] (2), and [Cu3(NAAP)3] (3) on the surface of commercial SiO2, calcination at 500 °C, and reduction in the stream of the forming gas 5% H2/N2 at 400 °C, exhibited unusual properties. First, the catalysts showed a rapid increase in catalytic activity. After reaching the maximum conversion, the catalyst started to deactivate. The unusual behavior could be explained by the presence of the phosphate phase, which made Cu2+ reduction more difficult. The phosphorus content gradually decreased during time-on-stream, copper was reduced, and the activity increased. The deactivation of the catalyst could be related to the copper diffusion processes. The most active CuP-1 catalyst reaches a maximum of 73% ethanol conversion and over 98% acetaldehyde selectivity at 325 °C and WHSV = 2.37 h-1.

3.
ACS Catal ; 13(19): 12970-12982, 2023 Oct 06.
Article in English | MEDLINE | ID: mdl-37822857

ABSTRACT

In this work, we demonstrate that amorphous and porous molybdenum silicate microspheres are highly active catalysts for heterogeneous propylene metathesis. Homogeneous molybdenum silicate microspheres and aluminum-doped molybdenum silicate microspheres were synthesized via a nonaqueous condensation of a hybrid molybdenum biphenyldicarboxylate-based precursor solution with (3-aminopropyl)triethoxysilane. The as-prepared hybrid metallosilicate products were calcined at 500 °C to obtain amorphous and porous molybdenum silicate and aluminum-doped molybdenum silicate microspheres with highly dispersed molybdate species inserted into the silicate matrix. These catalysts contain mainly highly dispersed MoOx species, which possess high catalytic activity in heterogeneous propylene metathesis to ethylene and butene. Compared to conventional silica-supported MoOx catalysts prepared via incipient wetness impregnation (MoIWI), the microspheres with low Mo content (1.5-3.6 wt %) exhibited nearly 2 orders of magnitude higher steady-state propylene metathesis rates at 200 °C, approaching site time yields of 0.11 s-1.

4.
ACS Sustain Chem Eng ; 11(30): 10980-10992, 2023 Jul 31.
Article in English | MEDLINE | ID: mdl-37538293

ABSTRACT

Non-oxidative ethanol dehydrogenation is a renewable source of acetaldehyde and hydrogen. The reaction is often catalyzed by supported copper catalysts with high selectivity. The activity and long-term stability depend on many factors, including particle size, choice of support, doping, etc. Herein, we present four different synthetic pathways to prepare Cu/SiO2 catalysts (∼2.5 wt % Cu) with varying copper distribution: hydrolytic sol-gel (sub-nanometer clusters), dry impregnation (A̅ = 3.4 nm; σ = 0.9 nm and particles up to 32 nm), strong electrostatic adsorption (A̅ = 3.1 nm; σ = 0.6 nm), and solvothermal hot injection followed by Cu particle deposition (A̅ = 4.0 nm; σ = 0.8 nm). All materials were characterized by ICP-OES, XPS, N2 physisorption, STEM-EDS, XRD, RFC N2O, and H2-TPR and tested in ethanol dehydrogenation from 185 to 325 °C. The sample prepared by hydrolytic sol-gel exhibited high Cu dispersion and, accordingly, the highest catalytic activity. Its acetaldehyde productivity (2.79 g g-1 h-1 at 255 °C) outperforms most of the Cu-based catalysts reported in the literature, but it lacks stability and tends to deactivate over time. On the other hand, the sample prepared by simple and cost-effective dry impregnation, despite having Cu particles of various sizes, was still highly active (2.42 g g-1 h-1 acetaldehyde at 255 °C). Importantly, it was the most stable sample out of the studied materials. The characterization of the spent catalyst confirmed its exceptional properties: it showed the lowest extent of both coking and particle sintering.

5.
Nanomaterials (Basel) ; 12(19)2022 Sep 27.
Article in English | MEDLINE | ID: mdl-36234493

ABSTRACT

Design and properties of a plasmonic modulator in situ tunable by electric field are presented. Our design comprises the creation of periodic surface pattern on the surface of an elastic polymer supported by a piezo-substrate by excimer laser irradiation and subsequent selective coverage by silver by tilted angle vacuum evaporation. The structure creation was confirmed by AFM and FIB-SEM techniques. An external electric field is used for fine control of the polymer pattern amplitude, which tends to decrease with increasing voltage. As a result, surface plasmon-polariton excitation is quenched, leading to the less pronounced structure of plasmon response. This quenching was checked using UV-Vis spectroscopy and SERS measurements, and confirmed by numerical simulation. All methods prove the proposed functionality of the structures enabling the creation smart plasmonic materials for a very broad range of advanced optical applications.

6.
Inorg Chem ; 56(17): 10699-10705, 2017 Sep 05.
Article in English | MEDLINE | ID: mdl-28832130

ABSTRACT

The condensation reaction between Ph2Si(OC(O)CH3)2 and OP(OSiMe3)3 leads to elimination of CH3C(O)OSiMe3 and the formation of the new silicophosphate cage molecule Ph12Si6P4O16 (1) with an adamantane-like core possessing four terminal P═O moieties and six O-SiPh2-O bridging groups. Compound 1 was further reacted with the Lewis acid B(C6F5)3. We observed adduct formation by coordination through the P═O→B bonds and isolated and structurally characterized two new molecules. In the first of them, the adamantane-like cage is preserved and three phosphoryl oxygen atoms coordinate to boranes, forming Ph12Si6O16P4·3B(C6F5)3 (2); the remaining P═O group is inverted toward the cage center pointing along a C3 molecular axis. The molecule is chiral, and the compound 2 crystallizes as a conglomerate of homochiral crystals. Enantiomers 2M and 2P were both structurally characterized. The second adduct resulted from an unexpected reorganization of the Si-O-P linkages in the adamantane cage during the reaction of 1 with 4 equiv of B(C6F5)3. The bis-adduct Ph6Si3O8P2·2B(C6F5)3 (3) was formed with an inorganic core representing half of the parent molecule 1.

SELECTION OF CITATIONS
SEARCH DETAIL
...