Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Salud mil ; 42(1): e302, 05/05/2023. ilus, graf, tab
Article in Spanish | LILACS, UY-BNMED, BNUY | ID: biblio-1531521

ABSTRACT

Introducción: el mieloma múltiple es un trastorno hematológico maligno y el segundo cáncer de la sangre más frecuente. El proceso de la angiogénesis tumoral es fundamental para el crecimiento y metástasis de muchos tipos de tumores, incluido en mieloma múltiple. Se sabe que la sobreexpresión del factor de crecimiento endothelial vascular se encuentra asociado a un mal pronóstico en esta patología, representando un blanco clave para la terapia anti-angiogénica en mieloma múltiple. El anticuerpo monoclonal Bevacizumab es capaz de unirse con gran afinidad al factor de crecimiento endothelial vascular bloqueando su acción. Objetivo: evaluar el Fab(Bevacizumab) marcado con 99mTc o Cy7 como potenciales agentes de imagen moleculares de la expresión de factor de crecimiento endothelial vascular en mieloma múltiple. Material y métodos: la expresión de factor de crecimiento endothelial vascular fue analizada mediante citometría de flujo en la línea celular huaman de mieloma múltiple, la MM1S. Fab(Bevacizumab) fue producido mediante digestión de Bevacizumab con papaína, conjugado a NHS-HYNIC-Tfa y radiomarcado con 99mTc. Se realizaron estudios de biodistribución y de tomografía computarizada por emisión del fotón simple. A su vez, Fab(Bevacizumab) fue marcado con Cy7 para obtener imágenes de fluorescencia in vivo hasta 96 horas. Resultados: el análisis por citometría de flujo en la línea celular MM1S reveló que la expresión de factor de crecimiento endothelial vascular es predominantemente intracelular. Los estudios de biodistribución y SPECT/CT del complejo 99mTc-HYNIC-Fab(Bevacizumab) mostraron una rápida eliminación sanguínea y una significativa captación a nivel renal y tumoral. Las imágenes por fluorescencia empleando Cy7-Fab(Bevacizumab) permitieron la visualización tumoral hasta 96 h p.i. Conclusiones: logramos visualizar la expresión de factor de crecimiento endothelial vascular in vivo en mieloma múltiple mediante el empleo del fragmento Fab del anticuerpo anti-VEGF (Bevacizumab) marcado con 99mTc y Cy7. Estos nuevos agentes de imagen molecular podrían ser empleados potencialmente en el ámbito clínico para la estadificación y el seguimiento de pacientes con mieloma múltiple, mediante la visualización radioactiva in vivo de la expresión de factor de crecimiento endothelial vascular en todo el cuerpo. La imagen óptica de estos trazadores mejoraría el muestreo tumoral y podría guiar la extirpación quirúrgica.


Introduction: Multiple myeloma is a hematologic malignancy and the second most common blood cancer. The process of tumor angiogenesis is central to the growth and metastasis of many types of tumors, including multiple myeloma. Overexpression of vascular endothelial growth factor is known to be associated with poor prognosis in this pathology, representing a key target for anti-angiogenic therapy in multiple myeloma. The monoclonal antibody Bevacizumab is able to bind with high affinity to vascular endothelial growth factor blocking its action. Objective: to evaluate 99mTc- or Cy7-labeled Fab(Bevacizumab) as potential molecular imaging agents of vascular endothelial growth factor expression in multiple myeloma. Methods: Vascular endothelial growth factor expression was analyzed by flow cytometry in the multiple myeloma huaman cell line, MM1S. Fab(Bevacizumab) was produced by digestion of Bevacizumab with papain, conjugated to NHS-HYNIC-Tfa and radiolabeled with 99mTc. Biodistribution and single photon emission computed tomography studies were performed. In turn, Fab(Bevacizumab) was labeled with Cy7 to obtain in vivo fluorescence images up to 96 hours. Results: Flow cytometry analysis in the MM1S cell line revealed that vascular endothelial growth factor expression is predominantly intracellular. Biodistribution and SPECT/CT studies of the 99mTc-HYNIC-Fab(Bevacizumab) complex showed rapid blood clearance and significant renal and tumor uptake. Fluorescence imaging using Cy7-Fab(Bevacizumab) allowed tumor visualization up to 96 h p.i. Conclusions: we were able to visualize vascular endothelial growth factor expression in vivo in multiple myeloma using the Fab fragment of the anti-VEGF antibody (Bevacizumab) labeled with 99mTc and Cy7. These new molecular imaging agents could potentially be employed in the clinical setting for staging and monitoring of patients with multiple myeloma by in vivo radioactive visualization of vascular endothelial growth factor expression throughout the body. Optical imaging of these tracers would improve tumor sampling and could guide surgical excision.


Introdução: O mieloma múltiplo é uma malignidade hematológica e o segundo câncer de sangue mais comum. O processo de angiogênese tumoral é fundamental para o crescimento e a metástase de muitos tipos de tumores, incluindo o mieloma múltiplo. Sabe-se que a superexpressão do fator de crescimento endotelial vascular está associada a um prognóstico ruim no mieloma múltiplo, representando um alvo importante para a terapia antiangiogênica no mieloma múltiplo. O anticorpo monoclonal Bevacizumab é capaz de se ligar com alta afinidade ao fator de crescimento endotelial vascular e bloquear sua ação. Objetivo: avaliar o Fab(Bevacizumab) marcado com 99mTc ou Cy7 como possíveis agentes de imagem molecular da expressão do fator de crescimento endotelial vascular no mieloma múltiplo. Métodos: A expressão do fator de crescimento endotelial vascular foi analisada por citometria de fluxo na linha celular de mieloma múltiplo MM1S. O Fab(Bevacizumab) foi produzido pela digestão do Bevacizumab com papaína, conjugado com NHS-HYNIC-Tfa e radiomarcado com 99mTc. Foram realizados estudos de biodistribuição e tomografia computadorizada por emissão de fóton único. Por sua vez, o Fab(Bevacizumab) foi marcado com Cy7 para geração de imagens de fluorescência in vivo por até 96 horas. Resultados: A análise de citometria de fluxo na linha celular MM1S revelou que a expressão do fator de crescimento endotelial vascular é predominantemente intracelular. Os estudos de biodistribuição e SPECT/CT do complexo 99mTc-HYNIC-Fab(Bevacizumab) mostraram uma rápida depuração sanguínea e uma captação renal e tumoral significativa. A imagem de fluorescência usando Cy7-Fab(Bevacizumab) permitiu a visualização do tumor até 96 horas p.i. Conclusões: Conseguimos visualizar a expressão do fator de crescimento endotelial vascular in vivo no mieloma múltiplo usando o fragmento Fab do anticorpo anti-VEGF (Bevacizumab) marcado com 99mTc e Cy7. Esses novos agentes de imagem molecular poderiam ser usados no cenário clínico para o estadiamento e o monitoramento de pacientes com mieloma múltiplo, visualizando radioativamente a expressão do fator de crescimento endotelial vascular in vivo em todo o corpo. A geração de imagens ópticas desses traçadores melhoraria a amostragem do tumor e poderia orientar a excisão cirúrgica.


Subject(s)
Animals , Mice , Technetium/pharmacokinetics , Molecular Imaging/methods , Flow Cytometry/methods , Bevacizumab/pharmacokinetics , Multiple Myeloma/diagnostic imaging , Vascular Endothelial Growth Factors , Mice, Inbred BALB C
2.
Diabetol Metab Syndr ; 12: 82, 2020.
Article in English | MEDLINE | ID: mdl-32973928

ABSTRACT

OBJECTIVE: Melatonin has been shown to increase brown adipose tissue (BAT) mass, which can lead to important metabolic effects, such as bodyweight reduction and glycemic improvement. However, BAT mass can only be measured invasively and. The gold standard for non-invasive measurement of BAT activity is positron emission tomography with 2-deoxy-2-[fluorine-18] fluoro-d-glucose (18F-FDG PET). There is no study, to our knowledge, that has evaluated if melatonin influences BAT activity, measured by this imaging technique in animals. METHODS: Three experimental groups of Wistar rats (control, pinealectomy, and pinealectomy replaced with melatonin) had an 18F-FDG PET performed at room temperature and after acute cold exposure. The ratio of increased BAT activity after cold exposure/room temperature was called "acute thermogenic capacity" (ATC) We also measured UCP-1 mRNA expression to correlate with the 18F-FDG PET results. RESULTS: Pinealectomy led to reduced acute thermogenic capacity, compared with the other groups, as well as reduced UCP1 mRNA expression. CONCLUSION: Melatonin deficiency impairs BAT response when exposed to acute cold exposure. These results can lead to future studies of the influence of melatonin on BAT, in animals and humans, without needing an invasive evaluation of BAT.

3.
J Ethnopharmacol ; 186: 270-279, 2016 Jun 20.
Article in English | MEDLINE | ID: mdl-27067367

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Casearia sylvestris (Salicaceae) is found in South America and presents antiulcerogenic, cytotoxic, antimicrobial, anti-inflammatory and antihypertensive activities. AIM OF THE STUDY: To assess the in vivo and ex vivo antitumor action of a fraction with casearins (FC) and its main component - Casearin X-isolated from C. sylvestris leaves. MATERIALS AND METHODS: Firstly, Sarcoma 180 bearing Swiss mice were treated with FC and Cas X for 7 days. Secondly, BALB/c nude animals received hollow fibers with colon carcinoma (HCT-116) or glioblastoma (SF-295) cells and were treated with FC for 4 days. On 5th day, proliferation was determined by MTT assay. RESULTS: FC 10 and 25mg/kg/day i.p. and 50mg/kg/day oral and Cas X 25mg/kg/day i.p. and 50mg/kg/day oral revealed tumor growth inhibition rates of 35.8, 86.2, 53.7, 90.0 and 65.5% and such tumors demonstrated rare mitoses and coagulation necrosis areas. Similarly, FC reduced multiplying of HCT-116 and SF-295 cells when evaluated by the Hollow Fiber Assay (2.5 and 5mg/kg/day i.p. and 25 and 50mg/kg/day oral), with cell growth inhibition rates ranging from 33.3 to 67.4% (p<0.05). Flow cytometry experiments revealed that FC reduced membrane integrity and induced DNA fragmentation and mitochondrial depolarization (p<0.05). CONCLUSIONS: FC and Cas X were efficient antitumor substances against murine and human cancer cells and caused reversible morphological changes in liver, kidneys and spleens, emphasizing clerodane diterpenes as an emerging class of anticancer molecules.


Subject(s)
Antineoplastic Agents, Phytogenic/therapeutic use , Casearia , Diterpenes, Clerodane/therapeutic use , Neoplasms/drug therapy , Plant Extracts/therapeutic use , Animals , Antineoplastic Agents, Phytogenic/pharmacology , Cell Line, Tumor , Cell Proliferation/drug effects , Diterpenes, Clerodane/pharmacology , Female , Humans , Kidney/drug effects , Kidney/pathology , Leukocyte Count , Liver/drug effects , Liver/pathology , Mice, Inbred BALB C , Mice, Nude , Microscopy , Neoplasms/pathology , Plant Extracts/pharmacology , Plant Leaves , Tumor Burden/drug effects
4.
BMC Immunol ; 16: 68, 2015 Nov 14.
Article in English | MEDLINE | ID: mdl-26572128

ABSTRACT

BACKGROUND: Galectin-3 is known to be a lectin that plays an important role in inflammatory processes, acting as pro-inflammatory mediator in activation and migration of neutrophils and macrophages, as well as in the phagocytic function of these cells. The injection of mineral oils into the peritoneal cavity of mice, such as 2, 6, 10, 14-tetramethylpentadecane (pristane), induce a chronic granulomatous inflammatory reaction which is rich in macrophages, B cells and peritoneal plasma cells known as oil granuloma. In addition, this inflammatory microenvironment provided by oil granulomas is also an important site of plasmacytoma induction, which are dependent on cytokine production and cellular mobilization. Here, we have analyzed the role of galectin-3 in inflammatory cells mobilization and organization after pristane injection characterizing granulomatous reaction through the formation of oil granulomas. RESULTS: In galectin-3 deficient mice (gal-3(-/-)), the mobilization of inflammatory cells, between peritoneal cavity and bone marrow, was responsible for the formation of disorganized oil granulomas, which presented scattered cells, large necrotic areas and low amounts of extracellular matrix. The production of inflammatory cytokines partially explained the distribution of cells through peritoneal cavity, since high levels of IL-6 in gal-3(-/-) mice led to drastically reduction of B1 cells. The previous pro-inflammatory status of these animals also explains the excess of cell death and disruption of oil granulomas architecture. CONCLUSIONS: Our data indicate, for the first time, that the disruption in the inflammatory cells migration in the absence of galectin-3 is a crucial event in the formation and organization of oil granulomas.


Subject(s)
Galectin 3/deficiency , Granuloma/etiology , Terpenes/administration & dosage , Animals , Cytokines/biosynthesis , Disease Models, Animal , Extracellular Matrix , Granulocytes/immunology , Granulocytes/metabolism , Granulocytes/pathology , Granuloma/metabolism , Granuloma/pathology , Inflammation Mediators/metabolism , Injections , Lymphocyte Subsets/immunology , Lymphocyte Subsets/metabolism , Lymphocyte Subsets/pathology , Macrophages, Peritoneal/immunology , Macrophages, Peritoneal/metabolism , Mice , Mice, Knockout , Mineral Oil/administration & dosage
5.
PLoS One ; 9(11): e111592, 2014.
Article in English | MEDLINE | ID: mdl-25369297

ABSTRACT

Galectin-3 (gal-3) is a ß-galactoside binding protein related to many tumoral aspects, e.g. angiogenesis, cell growth and motility and resistance to cell death. Evidence has shown its upregulation upon hypoxia, a common feature in solid tumors such as glioblastoma multiformes (GBM). This tumor presents a unique feature described as pseudopalisading cells, which accumulate large amounts of gal-3. Tumor cells far from hypoxic/nutrient deprived areas express little, if any gal-3. Here, we have shown that the hybrid glioma cell line, NG97ht, recapitulates GBM growth forming gal-3 positive pseudopalisades even when cells are grafted subcutaneously in nude mice. In vitro experiments were performed exposing these cells to conditions mimicking tumor areas that display oxygen and nutrient deprivation. Results indicated that gal-3 transcription under hypoxic conditions requires previous protein synthesis and is triggered in a HIF-1α and NF-κB dependent manner. In addition, a significant proportion of cells die only when exposed simultaneously to hypoxia and nutrient deprivation and demonstrate ROS induction. Inhibition of gal-3 expression using siRNA led to protein knockdown followed by a 1.7-2.2 fold increase in cell death. Similar results were also found in a human GBM cell line, T98G. In vivo, U87MG gal-3 knockdown cells inoculated subcutaneously in nude mice demonstrated decreased tumor growth and increased time for tumor engraftment. These results indicate that gal-3 protected cells from cell death under hypoxia and nutrient deprivation in vitro and that gal-3 is a key factor in tumor growth and engraftment in hypoxic and nutrient-deprived microenvironments. Overexpression of gal-3, thus, is part of an adaptive program leading to tumor cell survival under these stressing conditions.


Subject(s)
Galectin 3/genetics , Glioblastoma/pathology , Animals , Cell Hypoxia , Cell Line, Tumor , Cell Survival , Galectin 3/analysis , Galectin 3/metabolism , Gene Expression Regulation, Neoplastic , Glioblastoma/genetics , Glioblastoma/metabolism , Humans , Hypoxia/genetics , Hypoxia/metabolism , Hypoxia/pathology , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Mice, Nude , NF-kappa B/metabolism , Oxygen/metabolism , RNA Interference , RNA, Small Interfering/genetics , Up-Regulation
6.
PLoS One ; 9(3): e85380, 2014.
Article in English | MEDLINE | ID: mdl-24614859

ABSTRACT

Cancer is the second most common cause of death in the USA. Among the known classes of anticancer agents, the microtubule-targeted antimitotic drugs are considered to be one of the most important. They are usually classified into microtubule-destabilizing (e.g., Vinca alkaloids) and microtubule-stabilizing (e.g., paclitaxel) agents. Combretastatin A4 (CA-4), which is a natural stilbene isolated from Combretum caffrum, is a microtubule-destabilizing agent that binds to the colchicine domain on ß-tubulin and exhibits a lower toxicity profile than paclitaxel or the Vinca alkaloids. In this paper, we describe the docking study, synthesis, antiproliferative activity and selectivity index of the N-acylhydrazone derivatives (5a-r) designed as CA-4 analogues. The essential structural requirements for molecular recognition by the colchicine binding site of ß-tubulin were recognized, and several compounds with moderate to high antiproliferative potency (IC50 values ≤18 µM and ≥4 nM) were identified. Among these active compounds, LASSBio-1586 (5b) emerged as a simple antitumor drug candidate, which is capable of inhibiting microtubule polymerization and possesses a broad in vitro and in vivo antiproliferative profile, as well as a better selectivity index than the prototype CA-4, indicating improved selective cytotoxicity toward cancer cells.


Subject(s)
Drug Design , Hydrazones/pharmacology , Molecular Docking Simulation , Stilbenes/pharmacology , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Binding Sites , Cell Line, Tumor , Cell Proliferation/drug effects , Colchicine/pharmacology , Female , Fluorouracil/pharmacology , Humans , Hydrazones/chemistry , Hydrogen Bonding , Inhibitory Concentration 50 , Mice, Inbred BALB C , Mice, Nude , Microtubules/metabolism , Stilbenes/chemistry , Tubulin/metabolism
7.
Cancer Med ; 3(2): 201-14, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24421272

ABSTRACT

In order to study the role of galectin-3 in tumor angiogenesis associated with tumor-associated macrophages (TAM) and tumor parenchyma, the galectin-3 expression was reconstituted in Tm1 melanoma cell line that lacks this protein. Galectin-3-expressing cells (Tm1G3) and mock-vector transfected cells (Tm1N3) were injected into wild-type (WT) and galectin-3 knockout (KO) C57Bl/6 mice. Tumors originated from Tm1G3 were larger in tumor volume with enlarged functional vessels, decreased necrotic areas, and increased vascular endothelial growth factor (VEGF) protein levels. Galectin-3-nonexpressing-cells injected into WT and KO showed increased levels of transforming growth factor beta 1 (TGFß1) and, in WT animals this feature was also accompanied by increased VEGFR2 expression and its phosphorylation. In KO animals, tumors derived from galectin-3-expressing cells were infiltrated by CD68(+)-cells, whereas in tumors derived from galectin-3-nonexpressing-cells, CD68(+) cells failed to infiltrate tumors and accumulated in the periphery of the tumor mass. In vitro studies showed that Tm1G3 secreted more VEGF than Tm1N3 cells. In the latter case, TGFß1 induced VEGF production. Basal secretion of VEGF was higher in WT-bone marrow-derived macrophages (BMDM) than in KO-BMDM. TGFß1 induced secretion of VEGF only in WT-BMDM. Tm1G3-induced tumors had the Arginase I mRNA increased, which upregulated alternative macrophage (M2)/TAM induction. M2 stimuli, such as interleukin-4 (IL4) and TGFß1, increased Arginase I protein levels and galectin-3 expression in WT- BMDM, but not in cells from KO mice. Hence, we report that galectin-3 disruption in tumor stroma and parenchyma decreases angiogenesis through interfering with the responses of macrophages to the interdependent VEGF and TGFß1 signaling pathways.


Subject(s)
Galectin 3/metabolism , Macrophages/metabolism , Melanoma/blood supply , Transforming Growth Factor beta1/genetics , Vascular Endothelial Growth Factor A/metabolism , Animals , DNA Methylation , Galectin 3/genetics , Humans , Male , Melanoma/genetics , Melanoma/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Neovascularization, Pathologic/genetics , Neovascularization, Pathologic/metabolism , Promoter Regions, Genetic , Tumor Microenvironment , Vascular Endothelial Growth Factor A/biosynthesis
8.
In. Lopes, Ademar; Chammas, Roger; Iyeyasu, Hirofumi. Oncologia para a graduação. São Paulo, Lemar, 3; 2013. p.76-88. (Oncologia para a graduação).
Monography in Portuguese | LILACS | ID: lil-691982
9.
Cancer Chemother Pharmacol ; 66(1): 79-87, 2010 May.
Article in English | MEDLINE | ID: mdl-19771429

ABSTRACT

PURPOSE: We evaluated the involvement of angiotensin II (AngII)-dependent pathways in melanoma growth, through the pharmacological blockage of AT1 receptor by the anti-hypertensive drug losartan (LOS). RESULTS: We showed immunolabeling for both AngII and the AT1 receptor within the human melanoma microenvironment. Like human melanomas, we showed that murine melanomas also express the AT1 receptor. Growth of murine melanoma, both locally and at distant sites, was limited in mice treated with LOS. The reduction in tumor growth was accompanied by a twofold decrease in tumor-associated microvessel density and by a decrease in CD31 mRNA levels. While no differences were found in the VEGF expression levels in tumors from treated animals, reduction in the expression of the VEGFR1 (Flt-1) at the mRNA and protein levels was observed. We also showed downregulation of mRNA levels of both Flt-4 and its ligand, VEGF-C. CONCLUSIONS: Together, these results show that blockage of AT1 receptor signaling may be a promising anti-tumor strategy, interfering with angiogenesis by decreasing the expression of angiogenic factor receptors.


Subject(s)
Angiotensin II Type 1 Receptor Blockers/therapeutic use , Losartan/therapeutic use , Melanoma, Experimental/drug therapy , Neovascularization, Pathologic/drug therapy , Angiogenic Proteins/metabolism , Angiotensin II Type 1 Receptor Blockers/pharmacology , Animals , Cell Line, Tumor , Female , Humans , Losartan/pharmacology , Lung Neoplasms/drug therapy , Lung Neoplasms/metabolism , Lung Neoplasms/secondary , Melanoma/metabolism , Melanoma/pathology , Melanoma, Experimental/blood supply , Melanoma, Experimental/genetics , Melanoma, Experimental/metabolism , Mice , Mice, Inbred C57BL , Receptor, Angiotensin, Type 1/metabolism , Tumor Burden/drug effects
10.
Microsc Res Tech ; 72(4): 310-6, 2009 Apr.
Article in English | MEDLINE | ID: mdl-19009596

ABSTRACT

On the basis of transmission electron microscopy observations in tumor cell lines, oncologists have made innumerous diagnostic and therapeutical progresses. Following this path, the UNICAMP immunopathologies laboratory established the NG97 cell line derived from a human astrocytoma grade III, which when injected to the athymic nude mouse flank developed a grade IV astrocytoma. In this study, we focused on ultrastructural characterization of the NG97 cells after being recovered from xenotransplant (NG97ht). These cells in culture were assayed by two different electron microscopy procedures to characterize ultrastructures related to grade IV astrocytomas and to observe their structures through cell subcultivation. Additionally, comparative morphological descriptions of different cell passages in these technical procedures could be a useful tool for improving electron microscopy cell lineage protocols. Results from many cell passage observations showed ultrastructural similarities, which suggest malignant and glioblastoma phenotypes. In the first procedure, NG97ht cells were harvested and then incorporated into agarose before subjecting them to electron microscopy protocols, whereas in the second one, monolayer cells grew first on cover slides. Comparison among protocols revealed that organelles, cytoplasmatic extensions, spatial conformation of filopodia, and cell attachment to substrate were more preserved in the second procedure. Furthermore, in this latter procedure, a unique ellipsoidal structure was observed, which was already described when dealing with gliosarcoma cell line elsewhere. Therefore, these analyses demonstrated a morphological characterization of a new NG97ht cell line using electron transmission microscopy. Moreover, it has been shown that the second procedure provides more detailed information compared with the first.


Subject(s)
Astrocytoma/ultrastructure , Microscopy, Electron, Transmission/methods , Animals , Astrocytoma/pathology , Cell Culture Techniques/methods , Cell Line, Tumor , Humans , Mice , Neoplasm Transplantation , Transplantation, Heterologous
SELECTION OF CITATIONS
SEARCH DETAIL
...