Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 25(8)2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38673963

ABSTRACT

Accurate etiologic diagnosis provides an appropriate secondary prevention and better prognosis in ischemic stroke (IS) patients; still, 45% of IS are cryptogenic, urging us to enhance diagnostic precision. We have studied the transcriptomic content of plasma extracellular vesicles (EVs) (n = 21) to identify potential biomarkers of IS etiologies. The proteins encoded by the selected genes were measured in the sera of IS patients (n = 114) and in hypertensive patients with (n = 78) and without atrial fibrillation (AF) (n = 20). IGFBP-2, the most promising candidate, was studied using immunohistochemistry in the IS thrombi (n = 23) and atrium of AF patients (n = 13). In vitro, the IGFBP-2 blockade was analyzed using thromboelastometry and endothelial cell cultures. We identified 745 differentially expressed genes among EVs of cardioembolic, atherothrombotic, and ESUS groups. From these, IGFBP-2 (cutoff > 247.6 ng/mL) emerged as a potential circulating biomarker of embolic IS [OR = 8.70 (1.84-41.13) p = 0.003], which was increased in patients with AF vs. controls (p < 0.001) and was augmented in cardioembolic vs. atherothrombotic thrombi (p < 0.01). Ex vivo, the blockage of IGFBP-2 reduced clot firmness (p < 0.01) and lysis time (p < 0.001) and in vitro, diminished endothelial permeability (p < 0.05) and transmigration (p = 0.06). IGFBP-2 could be a biomarker of embolic IS and a new therapeutic target involved in clot formation and endothelial dysfunction.


Subject(s)
Biomarkers , Extracellular Vesicles , Insulin-Like Growth Factor Binding Protein 2 , Ischemic Stroke , Thrombosis , Humans , Extracellular Vesicles/metabolism , Extracellular Vesicles/genetics , Biomarkers/blood , Male , Female , Aged , Thrombosis/metabolism , Thrombosis/etiology , Thrombosis/blood , Ischemic Stroke/metabolism , Ischemic Stroke/blood , Ischemic Stroke/genetics , Insulin-Like Growth Factor Binding Protein 2/genetics , Insulin-Like Growth Factor Binding Protein 2/metabolism , Insulin-Like Growth Factor Binding Protein 2/blood , Middle Aged , Gene Expression Profiling , Transcriptome , Atrial Fibrillation/metabolism , Atrial Fibrillation/genetics , Atrial Fibrillation/complications , Atrial Fibrillation/blood
2.
J Thromb Haemost ; 22(4): 1080-1093, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38160727

ABSTRACT

BACKGROUND: Active coagulation factor XIII (FXIII) catalyzing crosslinking of fibrin and other hemostatic factors plays a key role in clot stability and lysis. OBJECTIVES: To evaluate the effect of FXIII inhibition in a mouse model of ischemic stroke (IS) and the role of activated FXIII (FXIIIa) in clot formation and lysis in patients with IS. METHODS: A ferric chloride IS murine model was performed before and after administration of a FXIIIa inhibitor (FXIIIinh). Thromboelastometry in human and mice blood was used to evaluate thrombus stiffness and lysis with FXIIIinh. FXIIIa-dependent fibrin crosslinking and lysis with fibrinolytic drugs (tissue plasminogen activator and tenecteplase) were studied on fibrin plates and on thrombi and clotted plasma of patients with IS. Finally, circulating and thrombus FXIIIa were measured in 85 patients with IS. RESULTS: FXIIIinh administration before stroke induction reduced infarct size, α2-antiplasmin (α2AP) crosslinking, and local microthrombosis, improving motor coordination and fibrinolysis without intracranial bleeds (24 hours). Interestingly, FXIII blockade after stroke also reduced brain damage and neurologic deficit. Thromboelastometry in human/mice blood with FXIIIinh showed delayed clot formation, reduced clot firmness, and shortened tissue plasminogen activator lysis time. FXIIIa fibrin crosslinking increased fibrin density and lysis resistance, which increased further after α2AP addition. FXIIIinh enhanced ex vivo lysis in stroke thrombi and fibrin plates. In patients with IS, thrombus FXIII and α2AP were associated with inflammatory and hemostatic components, and plasma FXIIIa correlated with thrombus α2AP and fibrin. CONCLUSION: Our results suggest a key role of FXIIIa in thrombus stabilization, α2AP crosslinking, and lysis resistance, with a protective effect of FXIIIinh in an IS experimental model.


Subject(s)
Antifibrinolytic Agents , Ischemic Stroke , Thrombosis , Humans , Animals , Mice , Factor XIII , Tissue Plasminogen Activator , Fibrinolysis/physiology , Fibrin , Thrombosis/drug therapy
3.
Front Cell Dev Biol ; 11: 1128534, 2023.
Article in English | MEDLINE | ID: mdl-37228645

ABSTRACT

Aged muscles accumulate satellite cells with a striking decline response to damage. Although intrinsic defects in satellite cells themselves are the major contributors to aging-associated stem cell dysfunction, increasing evidence suggests that changes in the muscle-stem cell local microenvironment also contribute to aging. Here, we demonstrate that loss of the matrix metalloproteinase-10 (MMP-10) in young mice alters the composition of the muscle extracellular matrix (ECM), and specifically disrupts the extracellular matrix of the satellite cell niche. This situation causes premature features of aging in the satellite cells, contributing to their functional decline and a predisposition to enter senescence under proliferative pressure. Similarly, reduction of MMP-10 levels in young satellite cells from wild type animals induces a senescence response, while addition of the protease delays this program. Significantly, the effect of MMP-10 on satellite cell aging can be extended to another context of muscle wasting, muscular dystrophy. Systemic treatment of mdx dystrophic mice with MMP-10 prevents the muscle deterioration phenotype and reduces cellular damage in the satellite cells, which are normally under replicative pressure. Most importantly, MMP-10 conserves its protective effect in the satellite cell-derived myoblasts isolated from a Duchenne muscular dystrophy patient by decreasing the accumulation of damaged DNA. Hence, MMP-10 provides a previously unrecognized therapeutic opportunity to delay satellite cell aging and overcome satellite cell dysfunction in dystrophic muscles.

4.
Life (Basel) ; 11(12)2021 Dec 14.
Article in English | MEDLINE | ID: mdl-34947929

ABSTRACT

Matrix metalloproteinases (MMPs) have been implicated in the progression of muscular dystrophy, and recent studies have reported the role of MMP-10 in skeletal muscle pathology of young dystrophic mice. Nevertheless, its involvement in dystrophin-deficient hearts remains unexplored. Here, we aimed to investigate the involvement of MMP-10 in the progression of severe muscular dystrophy and to characterize MMP-10 loss in skeletal and cardiac muscles of aged dystrophic mice. We examined the histopathological effect of MMP-10 ablation in aged mdx mice, both in the hind limb muscles and heart tissues. We found that MMP-10 loss compromises survival rates of aged mdx mice, with skeletal and cardiac muscles developing a chronic inflammatory response. Our findings indicate that MMP-10 is implicated in severe muscular dystrophy progression, thus identifying a new area of research that could lead to future therapies for dystrophic muscles.

5.
Life (Basel) ; 11(5)2021 May 01.
Article in English | MEDLINE | ID: mdl-34062730

ABSTRACT

BACKGROUND: Atherosclerosis is the main etiology of cardiovascular diseases (CVD), associated to systemic inflammation. Matrix metalloproteinases (MMPs) are related to atherosclerosis progression through the SDF1/CXCR4 axis promoting macrophages recruitment within the vascular wall. The goal was to assess new circulatory inflammatory markers in relation to atherosclerosis. METHODS: Measurement of SDF1, MMP12 and CRP in blood samples of 298 prospective patients with cardiovascular risk. To explore atherosclerosis progression, CXCR4/SDF1 axis and MMP12 expression were determined by RT-qPCR and by immunohistochemistry in the aorta of accelerated and delayed atherosclerosis mice models (Apoe-/- and Apoe-/-Mmp10-/-). RESULTS: SDF1, MMP12 and CRP were elevated in patients with clinical atherosclerosis, but after controlling by confounding factors, only SDF1 and CRP remained increased. Having high levels of both biomarkers showed 2.8-fold increased risk of presenting clinical atherosclerosis (p = 0.022). Patients with elevated SDF1, MMP12 and CRP showed increased risk of death in follow-up (HR = 3.2, 95%CI: 1.5-7.0, p = 0.004). Gene and protein expression of CXCR4 and MMP12 were increased in aortas from Apoe-/- mice. CONCLUSIONS: The combination of high circulating SDF1, MMP12 and CRP identified patients with particular inflammatory cardiovascular risk and increased mortality. SDF1/CXCR4 axis and MMP12 involvement in atherosclerosis development suggests that they could be possible atherosclerotic targets.

SELECTION OF CITATIONS
SEARCH DETAIL
...