Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Br J Nutr ; 119(6): 636-657, 2018 03.
Article in English | MEDLINE | ID: mdl-29553034

ABSTRACT

Nitrate (NO3 -) is an ergogenic nutritional supplement that is widely used to improve physical performance. However, the effectiveness of NO3 - supplementation has not been systematically investigated in individuals with different physical fitness levels. The present study analysed whether different fitness levels (non-athletes v. athletes or classification of performance levels), duration of the test used to measure performance (short v. long duration) and the test protocol (time trials v. open-ended tests v. graded-exercise tests) influence the effects of NO3 - supplementation on performance. This systematic review and meta-analysis was conducted and reported according to the guidelines outlined in the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) statement. A systematic search of electronic databases, including PubMed, Web of Science, SPORTDiscus and ProQuest, was performed in August 2017. On the basis of the search and inclusion criteria, fifty-four and fifty-three placebo-controlled studies evaluating the effects of NO3 - supplementation on performance in humans were included in the systematic review and meta-analysis, respectively. NO3 - supplementation was ergogenic in non-athletes (mean effect size (ES) 0·25; 95 % CI 0·11, 0·38), particularly in evaluations of performance using long-duration open-ended tests (ES 0·47; 95 % CI 0·23, 0·71). In contrast, NO3 - supplementation did not enhance the performance of athletes (ES 0·04; 95 % CI -0·05, 0·15). After objectively classifying the participants into different performance levels, the frequency of trials showing ergogenic effects in individuals classified at lower levels was higher than that in individuals classified at higher levels. Thus, the present study indicates that dietary NO3 - supplementation improves physical performance in non-athletes, particularly during long-duration open-ended tests.


Subject(s)
Dietary Supplements , Exercise Test , Nitrates/administration & dosage , Physical Functional Performance , Athletes , Athletic Performance , Exercise , Humans , Physical Endurance , Risk Assessment
2.
Front Physiol ; 7: 464, 2016.
Article in English | MEDLINE | ID: mdl-27790157

ABSTRACT

In the present study, we investigated whether the daily fluctuations of internal body temperature (Tb) and spontaneous locomotor activity (SLA) interact with the thermal and neuronal adjustments induced by high-intensity aerobic exercise until fatigue. The body temperature and SLA of adult Wistar rats (n = 23) were continuously recorded by telemetry for 48 h. Then, the rats were subjected to a protocol of graded exercise until fatigue or rest on the treadmill during light and dark-phases. Tb, tail skin temperature and ambient temperature during each experimental session were recorded. At the end of the last experimental session, the animals were anaesthetized; the brains were perfused and removed for immunohistochemical analysis of c-fos neuronal activation. The daily rhythms of SLA and Tb were strongly correlated (r = 0.88 and p < 0.001), and this was followed by a daily oscillation in both the ratio and the correlation index between these variables (p < 0.001). Exercise capacity was associated with a lower resting Tb (p < 0.01) and was higher in the light-phase (p < 0.001), resulting in an increased capacity to accumulate heat during exercise (p < 0.01). Independent of time-of-day, high intensity exercise strongly activated the hypothalamic paraventricular nucleus (PVN), the supra-optic nucleus (SON) and the locus coeruleus (LC) (p < 0.001) but not the suprachiasmatic nucleus (SCN). Taken together, our results points toward a role of the circadian system in a basal activity control of the thermoregulatory system as an important component for the onset of physical activities. In fact, rather than directly limiting the adjustments induced by exercise the present study brings new evidence that the effect of time-of-day on exercise performance occurs at the threshold level for each thermoregulatory system effector activity. This assumption is based on the observed resilience of the central clock to high-intensity exercise and the similarities in exercise-induced neuronal activation in the PVN, SON, and LC.

3.
Behav Brain Res ; 268: 111-6, 2014 Jul 15.
Article in English | MEDLINE | ID: mdl-24717329

ABSTRACT

The endocannabinoid system plays an important role in thermal control and modulates several behaviors, such as locomotion and food intake (FI) that may affect the body temperature (Tb). To test whether the changes in Tb induced by anandamide (AEA) are related to behavioral changes, adult Wistar rats received an intracerebroventricular injection of AEA (0.1, 1.0 and 10.0 µg) and vehicle. Total FI was weighted daily, and Tb and spontaneous locomotor activity (SLA) were simultaneously and continuously recorded. AEA induced an increase in Tb without changing SLA and FI. For all doses tested, the Tb average in the post-injection period was higher than in the pre-injection period. The higher thermal effect was verified using a dose of 10.0 µg AEA, starting within the first hour post-injection, and was maintained for 8h after treatment. A dose-dependent thermal effect was observed (r=0.953; p<0.05) at 1h post-injection. Hypoactivity was verified only at a dose of 1.0 µg AEA. As expected, both the Tb and SLA values during the dark phase were always higher than during the light phase and were positively correlated (r=0.834, p<0.001); however, this correlation was inverted (r=-0.852, p<0.01) after the rats received 10.0 µg AEA. In summary, our results suggest that brain AEA induces an increase in Tb, and that this effect may occur independently of changes in both locomotion and FI. Moreover, it is possible that the hypolocomotion induced by AEA could be an adaptive response to the increased Tb.


Subject(s)
Arachidonic Acids/pharmacology , Body Temperature/drug effects , Cannabinoid Receptor Modulators/pharmacology , Endocannabinoids/pharmacology , Motor Activity/drug effects , Polyunsaturated Alkamides/pharmacology , Animals , Circadian Rhythm/drug effects , Dose-Response Relationship, Drug , Male , Rats, Wistar , Time Factors
4.
Age (Dordr) ; 34(4): 831-43, 2012 Aug.
Article in English | MEDLINE | ID: mdl-21720770

ABSTRACT

No proven pharmacological therapies to delay or reverse age-related diastolic dysfunction exist. We hypothesized that late-life low-dose (non-blood-pressure-lowering) angiotensin-converting enzyme inhibition vs. angiotensin II receptor blockade would be equally efficacious at mitigating diastolic dysfunction in the senescent Fischer 344 × Brown Norway rat. Enalapril (10 mg/kg/day; n = 9) initiated at 24 months of age and continued for 6 months, increased myocardial relaxation (e'), reduced Doppler-derived indices of filling pressure (E/e'), favorably lowered the ratio of phospholamban-SERCA2 and reduced oxidative stress markers, Rac1 and nitrotyrosine, in aged hearts. Treatment with losartan (15 mg/kg/day; n = 9) similarly mitigated signs of cardiac oxidative stress, but impairments in diastolic function persisted when compared with untreated rats (n = 7). Our findings favor the idea that the lusitropic benefit of low-dose angiotensin-converting enzyme inhibitor initiated late in life may be related to an antioxidant-mediated modulation of SERCA2, resulting in improved relaxation rather than via overt effects on cardiac structure or blood pressure.


Subject(s)
Aging/drug effects , Diastole/drug effects , Enalapril/pharmacology , Heart Rate/drug effects , Losartan/pharmacology , Ventricular Function, Left/drug effects , Analysis of Variance , Animals , Arterial Pressure/drug effects , Disease Models, Animal , Dose-Response Relationship, Drug , Drug Administration Schedule , Echocardiography, Doppler , Heart Function Tests/drug effects , Male , Myocardial Contraction/drug effects , Oxidative Stress/drug effects , Random Allocation , Rats , Rats, Inbred BN , Rats, Inbred F344 , Reference Values , Sensitivity and Specificity , Ventricular Function, Left/physiology
5.
Cardiovasc Endocrinol ; 1(3): 49-58, 2012 Sep 01.
Article in English | MEDLINE | ID: mdl-23795309

ABSTRACT

OBJECTIVES: Long-term systemic blockade of the renin-angiotensin system (RAS) with either an angiotensin (Ang) II type 1 receptor antagonist or an angiotensin-converting enzyme inhibitor attenuates age-related cardiac remodeling and oxidative damage, and improves myocardial relaxation. However, the role of the brain RAS in mediating the development of diastolic dysfunction during aging is not known. We hypothesized that low brain RAS protects against the development of age-related diastolic dysfunction and left ventricular remodeling. METHODS: Sixty-week-old transgenic male ASrAOGEN rats (n =9), with normal circulating Ang II and functionally low brain Ang II, because of a GFAP promoter-linked angiotensinogen antisense targeted to glia, and age-matched and sex-matched Hannover Sprague-Dawley (SD; n= 9) rats, with normal levels of both circulating and brain Ang II, underwent echocardiograms to evaluate cardiac structure and function. Postmortem hearts were further compared for histological, molecular, and biochemical changes consistent with cardiac aging. RESULTS: ASrAOGEN rats showed preserved systolic and diastolic function at mid-life and this was associated with a lower, more favorable ratio of the phospholamban-SERCA2 ratio, reduced incidence of histological changes in the left ventricle, and increased cardiac Ang-(1-7) when compared with the in-vivo functional, and ex-vivo structural and biochemical indices from age-matched SD rats. Moreover, ASrAOGEN rats had lower percent body fat and a superior exercise tolerance when compared with SD rats of the same age. CONCLUSION: Our data indicate that the central RAS plays a role in the maintenance of diastolic function and exercise tolerance in mid-life and this may be related to effects on body habitus.

SELECTION OF CITATIONS
SEARCH DETAIL
...