Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Language
Publication year range
1.
Chemosphere ; 310: 136801, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36241121

ABSTRACT

Fungicides containing manganese (Mn) applied to control plant diseases increase the concentration of Mn in soils, which may potentiate Mn toxicity in acid soils. Some species of wild grasses, such as those from the Pampa biome located in South America, or even those introduced into this biome, may possess different mechanisms of tolerance to excess Mn. The present study aimed to evaluate the subcellular distribution and physiological and biochemical responses of exotic and native grasses from the Pampa biome, cultivated in Mn excess. The experiment was conducted in nutrient solution in a greenhouse, in an entirely randomized design, bifactorial 4 × 4, consisting of four Mn concentrations (2 [control], 300, 600 and 900 µM) and four species (two exotic: Avena strigosa and Lolium multiflorum; and two native: Paspalum notatum and Paspalum plicatulum). At 27 days of exposure to the treatments, biomass and growth rates, leaf gas exchange with the environment, photosynthetic pigment concentrations of malondialdehyde and H2O2, antioxidant enzyme activities (SOD and POD), and subcellular distribution of Mn were evaluated. Most of the grasses showed high concentration of Mn in tissues, mainly, in the shoot. In the presence of 900 µM Mn, more than 80% of the absorbed Mn was compartmentalized in the cell walls and vacuoles of the cells. Compartmentalization of Mn excess into metabolically less active organelles is the main tolerance factor in grasses. Physiological and biochemical responses were stimulated in the presence of 300 µM Mn, while 900 µM Mn negatively affected biochemical-physiological responses of grasses. The species L. multiflorum was most sensitive to excess Mn, while P. notatum was the most tolerant.


Subject(s)
Manganese , Poaceae , Antioxidants , Ecosystem , Hydrogen Peroxide , Manganese/toxicity , Soil/chemistry
2.
Biosci. j. (Online) ; 39: e39006, 2023. graf
Article in English | LILACS | ID: biblio-1415871

ABSTRACT

Due to rainfall and high temperatures, the Amazonian soil undergoes changes in its source material and leaching of base cations. This results in deep, infertile, and acidic soil. Aluminum present in acidic soil impairs plant growth and development by inhibiting root formation, enzymatic reactions, absorption, transport, and nutrient utilization. This study aimed to evaluate the effects of aluminum dosage on the metabolism of the oil palm Elaeis guineensis Jacq. The study was conducted in a greenhouse at the Federal Rural University of Amazonia. The experimental design was randomized, with five replications, in which dosages of 0, 10, 20, 30, and 40 mg L-1 aluminum chloride (AlCl3.6H2O) were administered. Electrolyte leakage, nitrate, nitrate reductase, free ammonium, soluble amino acids, proline content, and soluble proteins were analyzed in the leaves and roots of the oil palm. The highest concentration of aluminum was found in the roots. AlCl3 treatment at 40 mg L-1 increased electrolyte leakage, nitrate, ammonium, and proline concentrations in the roots, and amino acid concentrations in both the leaves and roots. Furthermore, a decrease in nitrate reductase enzyme activity was observed in the roots. This study demonstrates that the oil palm has mechanisms of tolerance to aluminum toxicity.


Subject(s)
Palm Oil/metabolism , Soil Acidity , Aluminum/toxicity
SELECTION OF CITATIONS
SEARCH DETAIL
...