Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 63
Filter
1.
Metabolites ; 14(4)2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38668334

ABSTRACT

Phytophthora parasitica is an oomycete pathogen that infects a broad range of crops of worldwide economic interest; among them are citrus species. In general, some Citrus and the rootstocks of related genera offer considerable resistance against P. parasitica; therefore, understanding the mechanisms involved in the virulence of this pathogen is crucial. In this work, P. parasitica secondary metabolite production was studied using matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) and ultrahigh-performance liquid chromatography coupled with electrospray ionization quadrupole time-of-flight tandem mass spectrometry (UHPLC/ESI-Q-TOF-MS) combined with chemometric tools, and its metabolic profile was evaluated under the influence of Citrus sunki (a highly susceptible host) and Poncirus trifoliata (a resistant genotype) extracts. The root extracts of Citrus sunki had an influence on the growth and hyphae morphology, and the root extracts of P. trifoliata had an influence on the zoospore behavior. In parallel, the spatial distribution of several metabolites was revealed in P. parasitica colonies using MALDI-MSI, and the metabolite ion of m/z 246 was identified as the protonated molecule of Arg-Ala. The MALDI-MSI showed variations in the surface metabolite profile of P. parasitica under the influence of the P. trifoliata extract. The P. parasitica metabolome analysis using UHPLC-ESI-Q-TOF-MS resulted in the detection of Arg-Gln (m/z 303.1775), as well as L-arginine (m/z 175.1191) and other unidentified metabolites. Significant variations in this metabolome were detected under the influence of the plant extracts when evaluated using UHPLC-ESI-Q-TOF-MS. Both techniques proved to be complementary, offering valuable insights at the molecular level when used to assess the impact of the plant extracts on microbial physiology in vitro. The metabolites identified in this study may play significant roles in the interaction or virulence of P. parasitica, but their functional characterization remains to be analyzed. Overall, these data confirm our initial hypotheses, demonstrating that P. parasitica has the capabilities of (i) recognizing host signals and altering its reproductive programing and (ii) distinguishing between hosts with varying responses in terms of reproduction and the production of secondary metabolites.

2.
J Biotechnol ; 368: 60-70, 2023 May 20.
Article in English | MEDLINE | ID: mdl-37088156

ABSTRACT

The Asian citrus psyllid (ACP) Diaphorina citri Kuwayama (Hemiptera: Liviidae) is the vector of Candidatus Liberibacter spp., the bacteria associated with huanglongbing (HLB), the most devastating disease of citrus worldwide. HLB management has heavily relied on insecticide applications to control the ACP, although there are efforts towards more sustainable alternatives. In previous work, our group assessed the potential bioactivity of different strains of Bacillus thuringiensis (Eubacteriales: Bacillaceae) (Bt) containing cry/cyt genes as feasible tools to control ACP nymphs. Here, we report an attempt to use the cry11A gene from Bt to produce transgenic sweet orange plants using two promoters. For the genetic transformation, 'Hamlin' and 'Valencia' sweet orange seedlings were used as sources of explants. Transgenic plants were detected by polymerase chain reaction (PCR) with specific primers, and the transgene copy number was confirmed by Southern blot analyses. Transcript expression levels were determined by qPCR. Mortality assays of D. citri nymphs were carried out in a greenhouse, and the effect of the events tested ranged from 22% to 43% at the end of the five-day exposure period. To our knowledge, this is the first manuscript reporting the production of citrus plants expressing the Bt cry11A gene for the management of D. citri nymphs.


Subject(s)
Bacillus thuringiensis , Citrus , Hemiptera , Rhizobiaceae , Animals , Bacillus thuringiensis/genetics , Hemiptera/genetics , Citrus/microbiology , Plants, Genetically Modified/genetics , Nymph , Transformation, Genetic , Plant Diseases/microbiology
4.
Front Med (Lausanne) ; 9: 1046551, 2022.
Article in English | MEDLINE | ID: mdl-36569127

ABSTRACT

Objective: To evaluate the performance of 18F-fluorodeoxyglucose positron emission tomography (18F-FDG PET/CT) radiomic features to predict overall survival (OS) in patients with locally advanced uterine cervical carcinoma. Methods: Longitudinal and retrospective study that evaluated 50 patients with cervical epidermoid carcinoma (clinical stage IB2 to IVA according to FIGO). Segmentation of the 18F-FDG PET/CT tumors was performed using the LIFEx software, generating the radiomic features. We used the Mann-Whitney test to select radiomic features associated with the clinical outcome (death), excluding the features highly correlated with each other with Spearman correlation. Subsequently, ROC curves and a Kaplan-Meier analysis were performed. A p-value < 0.05 were considered significant. Results: The median follow-up was 23.5 months and longer than 24 months in all surviving patients. Independent predictors for OS were found-SUVpeak with an AUC of 0.74, sensitivity of 77.8%, and specificity of 72.7% (p = 0.006); and the textural feature gray-level run-length matrix GLRLM_LRLGE, with AUC of 0.74, sensitivity of 72.2%, and specificity of 81.8% (p = 0.005). When we used the derived cut-off points from these ROC curves (12.76 for SUVpeak and 0.001 for GLRLM_LRLGE) in a Kaplan-Meier analysis, we can see two different groups (one with an overall survival probability of approximately 90% and the other with 30%). These biomarkers are independent of FIGO staging. Conclusion: By radiomic 18F-FDG PET/CT data analysis, SUVpeak and GLRLM_LRLGE textural feature presented the best performance to predict OS in patients with cervical cancer undergoing chemo-radiotherapy and brachytherapy.

5.
Microbiol Res ; 260: 126938, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35500454

ABSTRACT

The citrus crop is one of the most important culture worldwide, being Brazil the world highest producer of sweet oranges. The challenge for this culture is the constant attack by several pathogens that cause economically losses. Among the fungal diseases the post-bloom fruit drop causes dramatically losses in production, characterized by damages in the blossoms that causes fruit infeasibility and early drop, one of the causal agent is Colletotrichum abscissum. The pathogen control is based in chemical applications, irrespective of crops and fungicides used, development of fungicide-resistant pathogen populations is a problem in agriculture. New technologies are being applied every year to better understand the pathogens biology, which can contribute to plant diseases control as an alternative to chemical compounds. The RNA interference emerged as a potential technology for gene function studies as well as an approach for pathogens control. The fungicides compounds have action in different targets, such as the succinate dehydrogenase (SDH), which plays a hole in cell respiration. Therefore, here we investigate the functionality of the RNAi machinery of C. abscissum and test genetically whether the chemically pre-defined fungal SDH target may represent a promising target gene in RNAi based control strategies. The C. abscissum RNAi machinery was functionally proven by silencing of gene report. Then, the silencing of SDH subunits were induced and verified. In addition, the C. abscissum mutants generated for this study made possible the fungus infection process investigation. Furthermore, knockdown mutants of succinate dehydrogenase subunits genes resulted in morphological and significant pathogenicity changes. Thus, in conclusion, we suggest that the RNA interference is an important tool that can be exploited to post bloom fruit drop disease control and also the chemical fungicide target are still useful in the new technologies control strategies.


Subject(s)
Citrus , Colletotrichum , Fungicides, Industrial , Citrus/microbiology , Fruit/microbiology , Fungicides, Industrial/pharmacology , Plant Diseases/microbiology , RNA Interference , Succinate Dehydrogenase/genetics , Succinic Acid
6.
J Appl Clin Med Phys ; 23(3): e13508, 2022 Mar.
Article in English | MEDLINE | ID: mdl-34918865

ABSTRACT

PURPOSE: Methodologies for optimization of SPECT image acquisition can be challenging due to imaging throughput, physiological bias, and patient comfort constraints. We evaluated a vendor-independent method for simulating lower count image acquisitions. METHODS: We developed an algorithm that recombines the ECG-gated raw data into reduced counting acquisitions. We then tested the algorithm to simulate reduction of counting statistics from phantom SPECT image acquisition, which was synchronized with an ECG simulator. The datasets were reconstructed with a resolution recovery algorithm and the summed stress score (SSS) was assessed by three readers (two experts and one automatic). RESULTS: The algorithm generated varying counting levels, simulating multiple examinations at the same time. The error between the expected and the simulated countings ranged from approximately 5% to 10% for the ungated simulations and 0% for the gated simulations. CONCLUSIONS: The vendor-independent algorithm successfully generated lower counting statistics datasets from single-gated SPECT raw data. This method can be readily implemented for optimal SPECT research aiming to lower the injected activity and/ or to shorten the acquisition time.


Subject(s)
Algorithms , Tomography, Emission-Computed, Single-Photon , Humans , Image Processing, Computer-Assisted/methods , Phantoms, Imaging , Tomography, Emission-Computed, Single-Photon/methods
7.
PLoS One ; 16(9): e0256731, 2021.
Article in English | MEDLINE | ID: mdl-34492047

ABSTRACT

BACKGROUND: People with good health knowledge present a conceptual and objective appropriation of general and specific health topics, increasing their probability to express health protection and prevention measures. The main objective of this study was to conduct a rapid systematic review about the effects of health knowledge on the adoption of health behaviors and attitudes in populations under pandemic emergencies. METHODS: A systematic review was performed according to PRISMA checklist and the Cochrane method for rapid systematic reviews. Studies searches were performed in APA PsycNet, Embase, Cochrane Library and PubMed Central. Studies published between January 2009 and June 2020 and whose primary results reported a measure of interaction between health knowledge, health attitudes and behaviors in population groups during pandemics were included. A review protocol was recorded in PROSPERO (CRD42020183347). RESULTS: Out of a total of 5791 studies identified in the databases, 13 met the inclusion criteria. The included studies contain a population of 26099 adults, grouped into cohorts of health workers, university students, clinical patients, and the general population. Health knowledge has an important influence on the adoption of health behaviors and attitudes in pandemic contexts. CONCLUSIONS: The consolidation of these preventive measures favors the consolidation of public rapid responses to infection outbreaks. Findings of this review indicate that health knowledge notably favors adoption of health behaviors and practices. Therefore, health knowledge based on clear and objective information would help them understand and adopt rapid responses to face a pandemic.


Subject(s)
COVID-19/epidemiology , Emergencies/epidemiology , Health Behavior/physiology , Health Knowledge, Attitudes, Practice , COVID-19/virology , Humans , Pandemics/prevention & control , Risk Factors
8.
Microorganisms ; 9(6)2021 May 29.
Article in English | MEDLINE | ID: mdl-34072545

ABSTRACT

Xanthomonas citri subsp. citri (X. citri) is a plant pathogenic bacterium causing citrus canker disease. The xanA gene encodes a phosphoglucomutase/phosphomannomutase protein that is a key enzyme required for the synthesis of lipopolysaccharides and exopolysaccharides in Xanthomonads. In this work, firstly we isolated a xanA transposon mutant (xanA::Tn5) and analyzed its phenotypes as biofilm formation, xanthan gum production, and pathogenesis on the sweet orange host. Moreover, to confirm the xanA role in the impaired phenotypes we further produced a non-polar deletion mutant (ΔxanA) and performed the complementation of both xanA mutants. In addition, we analyzed the percentages of the xanthan gum monosaccharides produced by X. citri wild-type and xanA mutant. The mutant strain had higher ratios of mannose, galactose, and xylose and lower ratios of rhamnose, glucuronic acid, and glucose than the wild-type strain. Such changes in the saccharide composition led to the reduction of xanthan yield in the xanA deficient strain, affecting also other important features in X. citri, such as biofilm formation and sliding motility. Moreover, we showed that xanA::Tn5 caused no symptoms on host leaves after spraying, a method that mimetics the natural infection condition. These results suggest that xanA plays an important role in the epiphytical stage on the leaves that is essential for the successful interaction with the host, including adaptive advantage for bacterial X. citri survival and host invasion, which culminates in pathogenicity.

10.
Sci Rep ; 10(1): 20865, 2020 11 30.
Article in English | MEDLINE | ID: mdl-33257732

ABSTRACT

Huanglongbing (HLB), caused mainly by 'Candidatus Liberibacter asiaticus' (CLas), is the most devastating citrus disease because all commercial species are susceptible. HLB tolerance has been observed in Poncirus trifoliata and their hybrids. A wide-ranging transcriptomic analysis using contrasting genotypes regarding HLB severity was performed to identify the genetic mechanism associated with tolerance to HLB. The genotypes included Citrus sinensis, Citrus sunki, Poncirus trifoliata and three distinct groups of hybrids obtained from crosses between C. sunki and P. trifoliata. According to bacterial titer and symptomatology studies, the hybrids were clustered as susceptible, tolerant and resistant to HLB. In P. trifoliata and resistant hybrids, genes related to specific pathways were differentially expressed, in contrast to C. sinensis, C. sunki and susceptible hybrids, where several pathways were reprogrammed in response to CLas. Notably, a genetic tolerance mechanism was associated with the downregulation of gibberellin (GA) synthesis and the induction of cell wall strengthening. These defense mechanisms were triggered by a class of receptor-related genes and the induction of WRKY transcription factors. These results led us to build a hypothetical model to understand the genetic mechanisms involved in HLB tolerance that can be used as target guidance to develop citrus varieties or rootstocks with potential resistance to HLB.


Subject(s)
Citrus sinensis/genetics , Plant Diseases/genetics , Poncirus/genetics , Transcriptome/genetics , Citrus sinensis/microbiology , Disease Susceptibility/microbiology , Down-Regulation/genetics , Gene Expression Profiling/methods , Gene Expression Regulation, Plant/genetics , Genotype , Liberibacter/pathogenicity , Plant Diseases/microbiology , Poncirus/microbiology , Transcription Factors/genetics
11.
Fungal Genet Biol ; 144: 103444, 2020 11.
Article in English | MEDLINE | ID: mdl-32822858

ABSTRACT

Currently, eight Phyllosticta species are known to be associated with several Citrus hosts, incorporating diverse lifestyles: while some of them are endophytic (P. capitalensis and P. citribraziliensis), others are pathogenic (P. citriasiana, P. citricarpa, P. citrichinaensis and P. paracitricarpa). Sexual reproduction plays a key role in the interaction between these Phyllosticta species and their Citrus hosts, especially for the spread and persistence of the pathogenic species in the environment. Given this, differences in sexual reproduction strategies could be related to the differences in lifestyles. To evaluate this hypothesis, we characterized the mating-type loci of six Citrus-associated Phyllosticta species from whole genome assemblies. Mating-type genes in the Citrus-associated Phyllosticta species are highly variable in their sequence content, but the genomic locations and organization of the mating-type loci are conserved. Phyllosticta citriasiana, P. citribraziliensis, P. citricarpa and P. paracitricarpa are heterothallic, while P. capitalensis and P. citrichinaensis are homothallic. In addition, the P. citrichinaensis MAT1-2 idiomorph occurs in a separate location from the mating-type locus. Ancestral state reconstruction suggests that homothallism is the ancestral thallism state in Phyllosticta, with a shift to heterothallism in Phyllosticta species that are pathogenic to Citrus. Moreover, the homothallic strategies of P. capitalensis and P. citrichinaensis result from independent evolutionary events, as P. capitalensis locus likely represents the ancestral state, and P. citrichinaensis homothallism has risen through a reversion in a heterothallic ancestor and underwent remodelling events. As the pathogenic species P. citriasiana, P. citricarpa and P. paracitricarpa are heterothallic and incapable of selfing, disease management practices focused in preventing the occurrence of sexual reproduction could assist in the control of Citrus Black Spot and Citrus Tan Spot diseases. This study emphasizes the importance of studying Citrus-Phyllosticta interactions under evolutionary and genomic perspectives, as these approaches can provide valuable information about the association between Phyllosticta species and their hosts, and also serve as guidance for the improvement of disease management practices.


Subject(s)
Citrus/microbiology , Genes, Mating Type, Fungal/genetics , Plant Diseases/genetics , Reproduction/genetics , Ascomycota/genetics , Ascomycota/growth & development , Ascomycota/pathogenicity , Citrus/genetics , Citrus/growth & development , Plant Diseases/microbiology
12.
Insects ; 11(8)2020 Jul 24.
Article in English | MEDLINE | ID: mdl-32722346

ABSTRACT

'Candidatus Liberibacter asiaticus' (CLas) is a major causal agent of citrus Huanglongbing (HLB), which is transmitted by Asian citrus psyllid (ACP), Diaphorina citri, causing severe losses in various regions of the world. Vector efficiency is higher when acquisition occurs by ACP immature stages and over longer feeding periods. In this context, our goal was to evaluate the progression of CLas population and infection rate over four ACP generations that continuously developed on infected citrus plants. We showed that the frequency of CLas-positive adult samples increased from 42% in the parental generation to 100% in the fourth generation developing on CLas-infected citrus. The bacterial population in the vector also increased over generations. This information reinforces the importance of HLB management strategies, such as vector control and eradication of diseased citrus trees, to avoid the development of CLas-infected ACP generations with higher bacterial loads and, likely, a higher probability of spreading the pathogen in citrus orchards.

13.
Phytopathology ; 110(11): 1751-1755, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32520631

ABSTRACT

Xylella fastidiosa subsp. pauca, once confined to South America and infecting mainly citrus and coffee plants, has been found to be associated with other hosts and in other geographic regions. We present high-quality draft genome sequences of X. fastidiosa subsp. pauca strains J1a12, B111, U24D, and XRB isolated from citrus plants in Brazil, strain Fb7 isolated from a citrus plant in Argentina and strains 3124, Pr8x, and Hib4 isolated, respectively, from coffee, plum, and hibiscus plants in Brazil. Sequencing was performed using Roche 454-GS FLX, MiSeq-Illumina or Pacific Biosciences platforms. These high-quality genome assemblies will be useful for further studies about the genomic diversity, evolution, and biology of X. fastidiosa.


Subject(s)
Citrus , Hibiscus , Prunus domestica , Xylella , Argentina , Brazil , Coffee , Plant Diseases , Xylella/genetics
14.
Genet Mol Biol ; 43(2): e20190133, 2020.
Article in English | MEDLINE | ID: mdl-32568357

ABSTRACT

Citrus plants have been extremely affected by Huanglongbing (HLB) worldwide, causing economic losses. HLB disease causes disorders in citrus plants, leading to callose deposition in the phloem vessel sieve plates. Callose is synthesized by callose synthases, which are encoded by 12 genes (calS1- calS12)in Arabidopsis thaliana. We evaluated the expression of eight callose synthase genes from Citrus in hybrids between Citrus sunki and Poncirus trifoliata infected with HLB. The objective of this work was to identify possible tolerance loci combining the expression quantitative trait loci (eQTL) of different callose synthases and genetic Single-Nucleotide Polymorphism (SNP) maps of C. sunki and P. trifoliata. The expression data from all CscalS ranged widely among the hybrids. Furthermore, the data allowed the detection of 18 eQTL in the C. sunki map and 34 eQTL in the P. trifoliata map. In both maps, some eQTL for different CscalS were overlapped; thus, a single region could be associated with the regulation of more than one CscalS. The regions identified in this work can be interesting targets for future studies of Citrus breeding programs to manipulate callose synthesis during HLB infection.

15.
Sci Rep ; 10(1): 5992, 2020 04 07.
Article in English | MEDLINE | ID: mdl-32265528

ABSTRACT

Insect effectors are mainly secreted by salivary glands, modulate plant physiology and favor the establishment and transmission of pathogens. Feeding is the principal vehicle of transmission of Candidatus Liberibacter asiaticus (Ca. Las) by the Asian citrus psyllid (ACP), Diaphorina citri. This study aimed to predict putative ACP effectors that may act on the Huanglongbing (HLB) pathosystem. Bioinformatics analysis led to the identification of 131 candidate effectors. Gene expression investigations were performed to select genes that were overexpressed in the ACP head and modulated by Ca. Las. To evaluate the actions of candidate effectors on D. citri feeding, six effectors were selected for gene silencing bioassays. Double-stranded RNAs (dsRNAs) of the target genes were delivered to D. citri adults via artificial diets for five days. RNAi silencing caused a reduction in the ACP lifespan and decreased the salivary sheath size and honeydew production. Moreover, after dsRNA delivery of the target genes using artificial diet, the feeding behaviors of the insects were evaluated on young leaves from citrus seedlings. These analyses proved that knockdown of D. citri effectors also interfered with ACP feeding abilities in planta, causing a decrease in honeydew production and reducing ACP survival. Electrical penetration graph (EPG) analysis confirmed the actions of the effectors on D. citri feeding behaviors. These results indicate that gene silencing of D. citri effectors may cause changes in D. citri feeding behaviors and could potentially be used for ACP control.


Subject(s)
Hemiptera/genetics , Herbivory , Insect Vectors/genetics , Plant Diseases/prevention & control , RNA Interference , Animal Feed/analysis , Animals , Citrus/microbiology , Citrus/physiology , Female , Genes, Insect , Hemiptera/microbiology , Hemiptera/physiology , Insect Vectors/microbiology , Insect Vectors/physiology , Pest Control, Biological , Plant Diseases/microbiology , Rhizobiaceae/physiology
16.
Rapid Commun Mass Spectrom ; 34 Suppl 3: e8745, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32053855

ABSTRACT

RATIONALE: Xylella fastidiosa causes citrus variegated chlorosis (CVC) in sweet orange trees. A diagnostic method for detecting CVC before the symptoms appear, which would inform citrus producers in advance about when the plant should be removed from the orchard, is essential for reducing pesticide application costs. METHODS: Chemometrics was applied to high-performance liquid chromatography diode array detector (HPLC-DAD) data to evaluate the similarities and differences between the chromatographic profiles. A liquid chromatography/atmospheric pressure chemical ionization mass spectrometry selected reaction monitoring (LC/APCI-MS-SRM) method was developed to identify the major compounds and to determine their amounts in all samples. RESULTS: We evaluated the effect of this bacterium on the variation in the chemical profile in citrus plants. The organs of C. sinensis grafted on C. limonia were analyzed. Chemometrics was applied to the obtained data, and two major groups were differentiated. Flavonoids were observed in one group (leaves) and coumarins in the second (roots), both at higher concentrations in the plants with CVC symptoms than in those without the symptoms and those in the negative control. The rootstocks also interfered in the metabolism of the scion. CONCLUSIONS: The developed LC/APCI-MS-SRM method for detecting CVC before the symptoms appear is simple and accurate. It is inexpensive, and many samples can be screened per hour using 1 mg of leaves. Knowledge of the influence of the rootstock on the chemical profile of the graft is limited. This study demonstrates the effect of the rootstock in synthesizing flavonoids and increasing its content in all parts of the graft.


Subject(s)
Citrus sinensis/chemistry , Citrus sinensis/microbiology , Plant Diseases/microbiology , Tandem Mass Spectrometry/methods , Cheminformatics , Chromatography, High Pressure Liquid , Coumarins/analysis , Disease Resistance , Plant Breeding/methods , Plant Leaves/chemistry , Plant Leaves/microbiology , Plant Roots/chemistry , Plant Roots/microbiology , Plant Stems/chemistry , Plant Stems/microbiology , Xylella/pathogenicity
17.
Insect Sci ; 27(3): 519-530, 2020 Jun.
Article in English | MEDLINE | ID: mdl-30548193

ABSTRACT

Bacillus thuringiensis (Bt) toxins are effective in controlling insect pests either through the spraying of products or when expressed in transgenic crops. The discovery of endophytic Bt strains opened new perspectives for studies aimed at the control of sap-sucking insects, such as the Asian citrus psyllid Diaphorina citri Kuwayama (Hemiptera: Liviidae), a vector of "Candidatus Liberibacter spp.," associated with citrus huanglongbing (HLB). In this study, translocation of endophytic Bt strains in citrus seedlings inoculated with Bt suspension delivered by soil-drench, and their systemic pathogenicity to D. citri nymphs were investigated. The pathogenicity of three wild-type Bt strains against D. citri third-instar nymphs was demonstrated. Among the 10 recombinant strains tested (each of them harboring a single cry or cyt gene), 3 can be highlighted, causing 42%-77% and 66%-90% nymphal mortality at 2 and 5 d after inoculation, respectively. The isolation of Bt cells from young citrus shoots and dead nymphs, and PCR performed with specific primers, confirmed the involvement of the Bt strains in the psyllid mortality. This is the first report showing the translocation of Bt strains from citrus seedling roots to shoots and their potential to control D. citri nymphs that fed on these soil-drench inoculated seedlings. The Bt strains that caused the highest mortality rates have the potential to be used as bioinsecticides to control D. citri and the identified genes can be used for the production of transgenic Bt citrus.


Subject(s)
Bacillus thuringiensis , Bacterial Proteins/genetics , Citrus/microbiology , Endotoxins/genetics , Hemiptera/microbiology , Hemolysin Proteins/genetics , Plant Shoots/microbiology , Animals , Bacillus thuringiensis/genetics , Bacillus thuringiensis/pathogenicity , Bacillus thuringiensis Toxins , Endophytes/genetics , Endophytes/pathogenicity , Insect Vectors/microbiology , Nymph/microbiology , Pest Control, Biological/methods , Plant Diseases/microbiology , Rhizobiaceae , Seedlings/microbiology , Selection, Genetic
18.
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: but-ib17726

ABSTRACT

Xylella fastidiosa subsp. pauca , once confined to South America and infecting mainly citrus and coffee plants, has been found to be associated with other hosts and in other geographic regions. We present high-quality draft genome sequences of X. fastidiosa subsp. pauca strains J1a12, B111, U24D and XRB isolated from citrus plants in Brazil, strain Fb7 isolated from a citrus plant in Argentina and strains 3124, Pr8x and Hib4 isolated, respectively, from coffee, plum and hibiscus plants in Brazil. Sequencing was performed using Roche 454-GS FLX, MiSeq-Illumina or Pacific Biosciences platforms. These high-quality genome assemblies will be useful for further studies about the genomic diversity, evolution, and biology of X. fastidiosa.

19.
Phytopathology, v. 110, n. 11, p. 1751-1755, jun. 2020
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-3065

ABSTRACT

Xylella fastidiosa subsp. pauca , once confined to South America and infecting mainly citrus and coffee plants, has been found to be associated with other hosts and in other geographic regions. We present high-quality draft genome sequences of X. fastidiosa subsp. pauca strains J1a12, B111, U24D and XRB isolated from citrus plants in Brazil, strain Fb7 isolated from a citrus plant in Argentina and strains 3124, Pr8x and Hib4 isolated, respectively, from coffee, plum and hibiscus plants in Brazil. Sequencing was performed using Roche 454-GS FLX, MiSeq-Illumina or Pacific Biosciences platforms. These high-quality genome assemblies will be useful for further studies about the genomic diversity, evolution, and biology of X. fastidiosa.

20.
BMC Genomics ; 20(1): 554, 2019 Jul 05.
Article in English | MEDLINE | ID: mdl-31277573

ABSTRACT

BACKGROUND: Citrus are among the most important crops in the world. However, there are many diseases that affect Citrus caused by different pathogens. Citrus also hosts many symbiotic microorganisms in a relationship that may be advantageous for both organisms. The fungi Phyllosticta citricarpa, responsible for citrus black spot, and Phyllosticta capitalensis, an endophytic species, are examples of closely related species with different behavior in citrus. Both species are always biologically associated and are morphologically very similar, and comparing their genomes could help understanding the different lifestyles. In this study, a comparison was carried to identify genetic differences that could help us to understand the biology of P. citricarpa and P. capitalensis. RESULTS: Drafts genomes were assembled with sizes close to 33 Mb for both fungi, carrying 15,206 and 14,797 coding sequences for P. citricarpa and P. capitalensis, respectively. Even though the functional categories of these coding sequences is similar, enrichment analysis showed that the pathogenic species presents growth and development genes that may be necessary for the pathogenicity of P. citricarpa. On the other hand, family expansion analyses showed the plasticity of the genome of these species. Particular families are expanded in the genome of an ancestor of P. capitalensis and a recent expansion can also be detected among this species. Additionally, evolution could be driven by environmental cues in P. citricarpa. CONCLUSIONS: This work demonstrated genomic differences between P. citricarpa and P. capitalensis. Although the idea that these differences could explain the different lifestyles of these fungi, we were not able to confirm this hypothesis. Genome evolution seems to be of real importance among the Phyllosticta isolates and it is leading to different biological characteristics of these species.


Subject(s)
Ascomycota/genetics , Ascomycota/pathogenicity , Citrus/microbiology , Genome, Plant , Phylogeny , Endophytes/genetics , Enzymes/genetics , Enzymes/metabolism , Fungal Proteins/genetics , Fungal Proteins/metabolism , Genomics , Host-Pathogen Interactions/genetics , Plant Diseases/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL
...