Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Front Immunol ; 13: 773261, 2022.
Article in English | MEDLINE | ID: mdl-35126390

ABSTRACT

Short-chain fatty acids (SCFAs) are metabolites produced mainly by the gut microbiota with a known role in immune regulation. Acetate, the major SCFA, is described to disseminate to distal organs such as lungs where it can arm sentinel cells, including alveolar macrophages, to fight against bacterial intruders. In the current study, we explored mechanisms through which acetate boosts macrophages to enhance their bactericidal activity. RNA sequencing analyses show that acetate triggers a transcriptomic program in macrophages evoking changes in metabolic process and immune effector outputs, including nitric oxide (NO) production. In addition, acetate enhances the killing activity of macrophages towards Streptococcus pneumoniae in an NO-dependent manner. Mechanistically, acetate improves IL-1ß production by bacteria-conditioned macrophages and the latter acts in an autocrine manner to promote NO production. Strikingly, acetate-triggered IL-1ß production was neither dependent of its cell surface receptor free-fatty acid receptor 2, nor of the enzymes responsible for its metabolism, namely acetyl-CoA synthetases 1 and 2. We found that IL-1ß production by acetate relies on NLRP3 inflammasome and activation of HIF-1α, the latter being triggered by enhanced glycolysis. In conclusion, we unravel a new mechanism through which acetate reinforces the bactericidal activity of alveolar macrophages.


Subject(s)
Cytotoxicity, Immunologic , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Inflammasomes/metabolism , Macrophages, Alveolar/physiology , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Pneumococcal Infections/etiology , Pneumococcal Infections/metabolism , Streptococcus pneumoniae/immunology , Acetates/pharmacology , Animals , Biomarkers , Cytotoxicity, Immunologic/drug effects , Disease Models, Animal , Disease Susceptibility , Gene Knockdown Techniques , Glycolysis , Host-Pathogen Interactions/immunology , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Interleukin-1beta/metabolism , Mice , Mice, Knockout , Nitric Oxide/metabolism , Oxygen Consumption , RNA, Small Interfering/genetics
2.
Infect Immun ; 89(9): e0018821, 2021 08 16.
Article in English | MEDLINE | ID: mdl-34097474

ABSTRACT

Short-chain fatty acids (SCFAs) are the main metabolites produced by the gut microbiota via the fermentation of complex carbohydrates and fibers. Evidence suggests that SCFAs play a role in the control of infections through direct action both on microorganisms and on host signaling. This review summarizes the main microbicidal effects of SCFAs and discusses studies highlighting the effect of SCFAs in the virulence and viability of microorganisms. We also describe the diverse and complex modes of action of the SCFAs on the immune system in the face of infections with a specific focus on bacterial and viral respiratory infections. A growing body of evidence suggests that SCFAs protect against lung infections. Finally, we present potential strategies that may be leveraged to exploit the biological properties of SCFAs for increasing effectiveness and optimizing patient benefits.


Subject(s)
Anti-Infective Agents/therapeutic use , Fatty Acids, Volatile/therapeutic use , Infections/drug therapy , Lung/drug effects , Animals , Anti-Infective Agents/immunology , Anti-Infective Agents/metabolism , Fatty Acids, Volatile/immunology , Fatty Acids, Volatile/metabolism , Humans , Infections/immunology , Infections/microbiology , Lung/immunology , Lung/microbiology , Lung/virology , Microbial Viability , Respiratory Tract Infections/drug therapy , Respiratory Tract Infections/immunology , Respiratory Tract Infections/microbiology , Respiratory Tract Infections/virology , Signal Transduction/immunology , Virulence
3.
Mucosal Immunol ; 14(2): 296-304, 2021 03.
Article in English | MEDLINE | ID: mdl-33500564

ABSTRACT

Bacteria that colonize the human gastrointestinal tract are essential for good health. The gut microbiota has a critical role in pulmonary immunity and host's defense against viral respiratory infections. The gut microbiota's composition and function can be profoundly affected in many disease settings, including acute infections, and these changes can aggravate the severity of the disease. Here, we discuss mechanisms by which the gut microbiota arms the lung to control viral respiratory infections. We summarize the impact of viral respiratory infections on the gut microbiota and discuss the potential mechanisms leading to alterations of gut microbiota's composition and functions. We also discuss the effects of gut microbial imbalance on disease outcomes, including gastrointestinal disorders and secondary bacterial infections. Lastly, we discuss the potential role of the lung-gut axis in coronavirus disease 2019.


Subject(s)
Gastrointestinal Microbiome , Lung/immunology , Animals , COVID-19/immunology , Diet , Dietary Fiber/metabolism , Dysbiosis/immunology , Dysbiosis/microbiology , Humans , Immunity, Mucosal , Influenza, Human/immunology , Probiotics , Respiratory Syncytial Viruses , Respiratory Tract Infections
4.
FASEB J ; 34(2): 2749-2764, 2020 02.
Article in English | MEDLINE | ID: mdl-31908042

ABSTRACT

Streptococcus pneumoniae is a major cause of community-acquired pneumonia leading to high mortality rates. Inflammation triggered by pneumococcal infection is necessary for bacterial clearance but must be spatially and temporally regulated to prevent further tissue damage and bacterial dissemination. Annexin A1 (AnxA1) mainly acts through Formyl Peptide Receptor 2 (FPR2) inducing the resolution of inflammation. Here, we have evaluated the role of AnxA1 and FPR2 during pneumococcal pneumonia in mice. For that, AnxA1, Fpr2/3 knockout (KO) mice and wild-type (WT) controls were infected intranasally with S pneumoniae. AnxA1 and Fpr2/3 KO mice were highly susceptible to infection, displaying uncontrolled inflammation, increased bacterial dissemination, and pulmonary dysfunction compared to WT animals. Mechanistically, the absence of AnxA1 resulted in the loss of lung barrier integrity and increased neutrophil activation upon S pneumoniae stimulation. Importantly, treatment of WT or AnxA1 KO-infected mice with Ac2-26 decreased inflammation, lung damage, and bacterial burden in the airways by increasing macrophage phagocytosis. Conversely, Ac2-26 peptide was ineffective to afford protection in Fpr2/3 KO mice during infection. Altogether, these findings show that AnxA1, via FPR2, controls inflammation and bacterial dissemination during pneumococcal pneumonia by promoting host defenses, suggesting AnxA1-based peptides as a novel therapeutic strategy to control pneumococcal pneumonia.


Subject(s)
Annexin A1/metabolism , Inflammation/metabolism , Macrophages/metabolism , Neutrophils/metabolism , Pneumonia, Pneumococcal/metabolism , Receptors, Formyl Peptide/metabolism , Animals , Disease Models, Animal , Male , Mice, Inbred BALB C , Mice, Inbred C57BL , Phagocytosis/drug effects , Receptors, Lipoxin/metabolism , Streptococcus pneumoniae/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...