Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Molecules ; 27(7)2022 Mar 29.
Article in English | MEDLINE | ID: mdl-35408610

ABSTRACT

In this work, the deoxygenation of organic liquid products (OLP) obtained through the thermal catalytic cracking of palm oil at 450 °C, 1.0 atmosphere, with 10% (wt.) Na2CO3 as a catalyst, in multistage countercurrent absorber columns using supercritical carbon dioxide (SC-CO2) as a solvent, with an Aspen-HYSYS process simulator, was systematically investigated. In a previous study, the thermodynamic data basis and EOS modeling necessary to simulate the deoxygenation of OLP was presented. This work addresses a new flowsheet, consisting of 03 absorber columns, 10 expansions valves, 10 flash drums, 08 heat exchanges, 01 pressure pump, and 02 make-ups of CO2, aiming to improve the deacidification of OLP. The simulation was performed at 333 K, 140 bar, and (S/F) = 17; 350 K, 140 bar, and (S/F) = 38; 333 K, 140 bar, and (S/F) = 25. The simulation shows that 81.49% of OLP could be recovered and that the concentrations of hydrocarbons in the extracts of absorber-01 and absorber-02 were 96.95 and 92.78% (wt.) on a solvent-free basis, while the bottom stream of absorber-03 was enriched in oxygenated compounds with concentrations of up to 32.66% (wt.) on a solvent-free basis, showing that the organic liquid products (OLP) were deacidified and SC-CO2 was able to deacidify the OLP and obtain fractions with lower olefin contents. The best deacidifying condition was obtained at 333 K, 140 bar, and (S/F) = 17.


Subject(s)
Carbon Dioxide , Hydrocarbons , Computer Simulation , Palm Oil , Solvents
2.
Molecules ; 26(14)2021 Jul 20.
Article in English | MEDLINE | ID: mdl-34299663

ABSTRACT

In this work, the thermodynamic data basis and equation of state (EOS) modeling necessary to simulate the fractionation of organic liquid products (OLP), a liquid reaction product obtained by thermal catalytic cracking of palm oil at 450 °C, 1.0 atmosphere, with 10% (wt.) Na2CO3 as catalyst, in multistage countercurrent absorber/stripping columns using supercritical carbon dioxide (SC-CO2) as solvent, with Aspen-HYSYS was systematically investigated. The chemical composition of OLP was used to predict the density (ρ), boiling temperature (Tb), critical temperature (Tc), critical pressure (Pc), critical volume (Vc), and acentric factor (ω) of all the compounds present in OLP by applying the group contribution methods of Marrero-Gani, Han-Peng, Marrero-Pardillo, Constantinou-Gani, Joback and Reid, and Vetere. The RK-Aspen EOS used as thermodynamic fluid package, applied to correlate the experimental phase equilibrium data of binary systems OLP-i/CO2 available in the literature. The group contribution methods selected based on the lowest relative average deviation by computing Tb, Tc, Pc, Vc, and ω. For n-alkanes, the method of Marrero-Gani selected for the prediction of Tc, Pc and Vc, and that of Han-Peng for ω. For alkenes, the method of Marrero-Gani selected for the prediction of Tb and Tc, Marrero-Pardillo for Pc and Vc, and Han-Peng for ω. For unsubstituted cyclic hydrocarbons, the method of Constantinou-Gani selected for the prediction of Tb, Marrero-Gani for Tc, Joback for Pc and Vc, and the undirected method of Vetere for ω. For substituted cyclic hydrocarbons, the method of Constantinou-Gani selected for the prediction of Tb and Pc, Marrero-Gani for Tc and Vc, and the undirected method of Vetere for ω. For aromatic hydrocarbon, the method of Joback selected for the prediction of Tb, Constantinou-Gani for Tc and Vc, Marrero-Gani for Pc, and the undirected method of Vetere for ω. The regressions show that RK-Aspen EOS was able to describe the experimental phase equilibrium data for all the binary pairs undecane-CO2, tetradecane-CO2, pentadecane-CO2, hexadecane-CO2, octadecane-CO2, palmitic acid-CO2, and oleic acid-CO2, showing average absolute deviation for the liquid phase (AADx) between 0.8% and 1.25% and average absolute deviation for the gaseous phase (AADy) between 0.01% to 0.66%.

SELECTION OF CITATIONS
SEARCH DETAIL
...