Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Front Mol Neurosci ; 10: 62, 2017.
Article in English | MEDLINE | ID: mdl-28337124

ABSTRACT

Microglia are involved in physiological as well as neuropathological processes in the central nervous system (CNS). Their functional states are often referred to as M1-like and M2-like activation, and are believed to contribute to neuroinflammation-mediated neurodegeneration or neuroprotection, respectively. Parkinson's disease (PD) is one the most common neurodegenerative disease and is characterized by the progressive loss of midbrain dopaminergic (mDA) neurons in the substantia nigra resulting in bradykinesia, tremor, and rigidity. Interleukin 4 (IL4)-mediated M2-like activation of microglia, which is characterized by upregulation of alternative markers Arginase 1 (Arg1) and Chitinase 3 like 3 (Ym1) has been well studied in vitro but the role of endogenous IL4 during CNS pathologies in vivo is not well understood. Interestingly, microglia activation by IL4 has been described to promote neuroprotective and neurorestorative effects, which might be important to slow the progression of neurodegenerative diseases. In the present study, we addressed the role of endogenous and exogenous IL4 during MPP+-induced degeneration of mDA neurons in vitro and further addressed the impact of IL4-deficiency on neurodegeneration in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of PD in vivo. Our results clearly demonstrate that exogenous IL4 is important to protect mDA neurons in vitro, but endogenous IL4 seems to be dispensable for development and maintenance of the nigrostriatal system as well as MPTP-induced loss of TH+ neurons in vivo. These results underline the importance of IL4 in promoting a neuroprotective microglia activation state and strengthen the therapeutic potential of exogenous IL4 for protection of mDA neurons in PD models.

2.
Oncotarget ; 7(25): 37436-37455, 2016 Jun 21.
Article in English | MEDLINE | ID: mdl-27224923

ABSTRACT

Transforming growth factor ß (TGFß)-mediated anti-proliferative and differentiating effects promote neuronal differentiation during embryonic central nervous system development. TGFß downstream signals, composed of activated SMAD2/3, SMAD4 and a FOXO family member, promote the expression of cyclin-dependent kinase inhibitor Cdkn1a. In early CNS development, IGF1/PI3K signaling and the transcription factor FOXG1 inhibit FOXO- and TGFß-mediated Cdkn1a transcription. FOXG1 prevents cell cycle exit by binding to the SMAD/FOXO-protein complex. In this study we provide further details on the FOXG1/FOXO/SMAD transcription factor network. We identified ligands of the TGFß- and IGF-family, Foxo1, Foxo3 and Kcnh3 as novel FOXG1-target genes during telencephalic development and showed that FOXG1 interferes with Foxo1 and Tgfß transcription. Our data specify that FOXO1 activates Cdkn1a transcription. This process is under control of the IGF1-pathway, as Cdkn1a transcription increases when IGF1-signaling is pharmacologically inhibited. However, overexpression of CDKN1A and knockdown of Foxo1 and Foxo3 is not sufficient for neuronal differentiation, which is probably instructed by TGFß-signaling. In mature neurons, FOXG1 activates transcription of the seizure-related Kcnh3, which might be a FOXG1-target gene involved in the FOXG1 syndrome pathology.


Subject(s)
Ether-A-Go-Go Potassium Channels/biosynthesis , Forkhead Transcription Factors/metabolism , Neurons/metabolism , Smad Proteins/metabolism , Animals , Cell Differentiation/physiology , Cell Proliferation/physiology , Forkhead Box Protein O1/metabolism , Forkhead Box Protein O3/metabolism , Mice , Mice, Knockout , Mice, Transgenic , Nerve Tissue Proteins/metabolism , Neurons/cytology , Signal Transduction , Transfection
3.
Cell Tissue Res ; 365(2): 209-23, 2016 08.
Article in English | MEDLINE | ID: mdl-27115420

ABSTRACT

Growth/differentiation factor-15 (Gdf-15) is a member of the transforming growth factor-ß (Tgf-ß) superfamily and has been shown to be a potent neurotrophic factor for midbrain dopaminergic (DAergic) neurons both in vitro and in vivo. Gdf-15 has also been shown to be involved in inflammatory processes. The aim of this study was to identify the role of endogenous Gdf-15 in the MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) mouse model of Parkinson's disease (PD) by comparing Gdf-15 (+/+) and Gdf-15 (-/-) mice. At 4 days and 14 days post-MPTP administration, both Gdf-15 (+/+) and Gdf-15 (-/-) mice showed a similar decline in DAergic neuron numbers and in striatal dopamine (DA) levels. This was followed by a comparable restorative phase at 90 days and 120 days, indicating that the absence of Gdf-15 does not affect the susceptibility or the recovery capacity of the nigrostriatal system after MPTP administration. The MPTP-induced microglial and astrocytic response was not significantly altered between the two genotypes. However, pro-inflammatory and anti-inflammatory cytokine profiling revealed the differential expression of markers in Gdf-15 (+/+) and Gdf-15 (-/-) mice after MPTP administration. Thus, the MPTP mouse model fails to uncover a major role of endogenous Gdf-15 in the protection of MPTP-lesioned nigrostriatal DAergic neurons, in contrast to its capacity to protect the 6-hydroxydopamine-intoxicated nigrostriatal system.


Subject(s)
Dopaminergic Neurons/metabolism , Growth Differentiation Factor 15/deficiency , Neostriatum/metabolism , Neostriatum/pathology , Substantia Nigra/metabolism , Substantia Nigra/pathology , 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine/administration & dosage , Animals , Biomarkers/metabolism , Cell Proliferation , Cytokines/metabolism , Growth Differentiation Factor 15/metabolism , Inflammation Mediators/metabolism , Mice , Neuroglia/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism
4.
Front Mol Neurosci ; 9: 7, 2016.
Article in English | MEDLINE | ID: mdl-26869879

ABSTRACT

Parkinson's disease (PD) is a neurodegenerative disorder that is characterized by loss of midbrain dopaminergic (mDA) neurons in the substantia nigra (SN). Microglia-mediated neuroinflammation has been described as a common hallmark of PD and is believed to further trigger the progression of neurodegenerative events. Injections of 6-hydroxydopamine (6-OHDA) are widely used to induce degeneration of mDA neurons in rodents as an attempt to mimic PD and to study neurodegeneration, neuroinflammation as well as potential therapeutic approaches. In the present study, we addressed microglia and astroglia reactivity in the SN and the caudatoputamen (CPu) after 6-OHDA injections into the medial forebrain bundle (MFB), and further analyzed the temporal and spatial expression patterns of pro-inflammatory and anti-inflammatory markers in this mouse model of PD. We provide evidence that activated microglia as well as neurons in the lesioned SN and CPu express Transforming growth factor ß1 (Tgfß1), which overlaps with the downregulation of pro-inflammatory markers Tnfα, and iNos, and upregulation of anti-inflammatory markers Ym1 and Arg1. Taken together, the data presented in this study suggest an important role for Tgfß1 as a lesion-associated factor that might be involved in regulating microglia activation states in the 6-OHDA mouse model of PD in order to prevent degeneration of uninjured neurons by microglia-mediated release of neurotoxic factors such as Tnfα and nitric oxide (NO).

5.
Int J Mol Sci ; 17(2)2016 Jan 26.
Article in English | MEDLINE | ID: mdl-26821015

ABSTRACT

Parkinson's disease (PD) is a neurodegenerative disease characterised by histopathological and biochemical manifestations such as loss of midbrain dopaminergic (DA) neurons and decrease in dopamine levels accompanied by a concomitant neuroinflammatory response in the affected brain regions. Over the past decades, the use of toxin-based animal models has been crucial to elucidate disease pathophysiology, and to develop therapeutic approaches aimed to alleviate its motor symptoms. Analyses of transgenic mice deficient for cytokines, chemokine as well as neurotrophic factors and their respective receptors in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) model of PD have broadened the current knowledge of neuroinflammation and neurotrophic support. Here, we provide a comprehensive review that summarises the contribution of microglia-mediated neuroinflammation in MPTP-induced neurodegeneration. Moreover, we highlight the contribution of neurotrophic factors as endogenous and/or exogenous molecules to slow the progression of midbrain dopaminergic (mDA) neurons and further discuss the potential of combined therapeutic approaches employing neuroinflammation modifying agents and neurotrophic factors.


Subject(s)
Disease Models, Animal , MPTP Poisoning/immunology , Microglia/pathology , Nerve Growth Factors/metabolism , Parkinson Disease/immunology , Animals , Humans , MPTP Poisoning/drug therapy , MPTP Poisoning/pathology , Mice , Mice, Transgenic , Microglia/immunology , Nerve Growth Factors/therapeutic use , Parkinson Disease/drug therapy , Parkinson Disease/etiology , Parkinson Disease/pathology , Receptors, Nerve Growth Factor/metabolism
6.
Neurobiol Dis ; 88: 1-15, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26733415

ABSTRACT

Growth/differentiation factor-15 (Gdf-15) is a member of the TGF-ß superfamily and a pleiotropic, widely distributed cytokine, which has been shown to play roles in various pathologies, including inflammation. Analysis of Gdf-15(-/-) mice has revealed that it serves the postnatal maintenance of spinal cord motor neurons and sensory neurons. In a previous study, exogenous Gdf-15 rescued 6-hydroxydopamine (6-OHDA) lesioned Gdf-15(+/+) nigrostriatal dopaminergic (DAergic) neurons in vitro and in vivo. Whether endogenous Gdf-15 serves the physiological maintenance of nigrostriatal DAergic neurons in health and disease is not known and was addressed in the present study. Stereotactic injection of 6-OHDA into the medial forebrain bundle (MFB) led to a significant decline in the numbers of DAergic neurons in both Gdf-15(+/+) and Gdf-15(-/-) mice over a time-period of 14days. However, this decrease was exacerbated in the Gdf-15(-/-) mice, with only 5.5% surviving neurons as compared to 24% in the Gdf-15(+/+) mice. Furthermore, the microglial response to the 6-OHDA lesion was reduced in Gdf-15(-/-) mice, with significantly lower numbers of total and activated microglia and a differential cytokine expression as compared to the Gdf-15(+/+) mice. Using in vitro models, we could demonstrate the importance of endogenous Gdf-15 in promoting DAergic neuron survival thus highlighting its relevance in a direct neurotrophic supportive role. Taken together, these results indicate the importance of Gdf-15 in promoting survival of DAergic neurons and regulating the inflammatory response post 6-OHDA lesion.


Subject(s)
Cytokines/metabolism , Dopaminergic Neurons/pathology , Growth Differentiation Factor 15/deficiency , Microglia/pathology , Parkinson Disease/pathology , Animals , Animals, Newborn , Cell Count , Cell Survival , Cells, Cultured , Cytokines/genetics , Disease Models, Animal , Growth Differentiation Factor 15/genetics , In Vitro Techniques , Mesencephalon/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Neurites/pathology , Nitric Oxide/metabolism , Nitric Oxide Synthase Type II/genetics , Nitric Oxide Synthase Type II/metabolism , Oxidopamine/toxicity , Parkinson Disease/etiology , Transforming Growth Factor beta1/genetics , Transforming Growth Factor beta1/metabolism
8.
Cell Tissue Res ; 362(2): 317-30, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26077927

ABSTRACT

Growth/differentiation factor-15 (GDF-15) is a distant member of the transforming growth factor beta (TGF-ß) superfamily. It is widely distributed in the nervous system, where it has been shown to play an important role in neuronal maintenance. The present study investigates the role of endogenous GDF-15 in sciatic nerve (SN) lesions using wild-type (WT) and GDF-15 knock-out (KO) mice. SN of 5-6-month-old mice were crushed or transected. Dorsal root ganglia (DRG) and nerve tissue were analyzed at different time points from 6 h to 9 weeks post-lesion. Both crush and transection induced GDF-15 mRNA and protein in the distal portion of the nerve, with a peak at day 7. DRG neuron death did not significantly differ between the genotypes; similarly, remyelination of regenerating axons was not affected by the genotype. Alternative macrophage activation and macrophage recruitment were more pronounced in the KO nerve. Protrusion speed of axons was similar in the two genotypes but WT axons showed better maturation, as indicated by larger caliber at 9 weeks. Furthermore, the regenerated WT nerve showed better performance in the electromyography test, indicating better functional recovery. We conclude that endogenous GDF-15 is beneficial for axon regeneration following SN crush.


Subject(s)
Axons/metabolism , Ganglia, Spinal/metabolism , Growth Differentiation Factor 15/metabolism , Nerve Regeneration/physiology , Sciatic Nerve/metabolism , Animals , Mice, Inbred C57BL , Mice, Transgenic , Nerve Crush/methods , Nerve Regeneration/genetics , Transforming Growth Factor beta/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...