Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Front Cell Neurosci ; 17: 1226194, 2023.
Article in English | MEDLINE | ID: mdl-37650071

ABSTRACT

Introduction: Botulinum neurotoxin (BoNT) causes neuroparalytic disease and death by blocking neuromuscular transmission. There are no specific therapies for clinical botulism and the only treatment option is supportive care until neuromuscular function spontaneously recovers, which can take weeks or months after exposure. The highly specialized neuromuscular junction (NMJ) between phrenic motor neurons and diaphragm muscle fibers is the main clinical target of BoNT. Due to the difficulty in eliciting respiratory paralysis without a high mortality rate, few studies have characterized the neurophysiological mechanisms involved in diaphragm recovery from intoxication. Here, we develop a mouse model of botulism that involves partial paralysis of respiratory muscles with low mortality rates, allowing for longitudinal analysis of recovery. Methods and results: Mice challenged by systemic administration of 0.7 LD50 BoNT/A developed physiological signs of botulism, such as respiratory depression and reduced voluntary running activity, that persisted for an average of 8-12 d. Studies in isolated hemidiaphragm preparations from intoxicated mice revealed profound reductions in nerve-elicited, tetanic and twitch muscle contraction strengths that recovered to baseline 21 d after intoxication. Despite apparent functional recovery, neurophysiological parameters remained depressed for 28 d, including end plate potential (EPP) amplitude, EPP success rate, quantal content (QC), and miniature EPP (mEPP) frequency. However, QC recovered more quickly than mEPP frequency, which could explain the discrepancy between muscle function studies and neurophysiological recordings. Hypothesizing that differential modulation of voltage-gated calcium channels (VGCC) contributed to the uncoupling of QC from mEPP frequency, pharmacological inhibition studies were used to study the contributions of different VGCCs to neurophysiological function. We found that N-type VGCC and P/Q-type VGCC partially restored QC but not mEPP frequency during recovery from paralysis, potentially explaining the accelerated recovery of evoked release versus spontaneous release. We identified additional changes that presumably compensate for reduced acetylcholine release during recovery, including increased depolarization of muscle fiber resting membrane potential and increased quantal size. Discussion: In addition to identifying multiple forms of compensatory plasticity that occur in response to reduced NMJ function, it is expected that insights into the molecular mechanisms involved in recovery from neuromuscular paralysis will support new host-targeted treatments for multiple neuromuscular diseases.

2.
Pest Manag Sci ; 79(5): 1635-1649, 2023 May.
Article in English | MEDLINE | ID: mdl-36622360

ABSTRACT

BACKGROUND: Pyridazine pyrazolecarboxamides (PPCs) are a novel insecticide class discovered and optimized at BASF. Dimpropyridaz is the first PPC to be submitted for registration and controls many aphid species as well as whiteflies and other piercing-sucking insects. RESULTS: Dimpropyridaz and other tertiary amide PPCs are proinsecticides that are converted in vivo into secondary amide active forms by N-dealkylation. Active secondary amide metabolites of PPCs potently inhibit the function of insect chordotonal neurons. Unlike Group 9 and 29 insecticides, which hyperactivate chordotonal neurons and increase Ca2+ levels, active metabolites of PPCs silence chordotonal neurons and decrease intracellular Ca2+ levels. Whereas the effects of Group 9 and 29 insecticides require TRPV (Transient Receptor Potential Vanilloid) channels, PPCs act in a TRPV-independent fashion, without compromising cellular responses to Group 9 and 29 insecticides, placing the molecular PPC target upstream of TRPVs. CONCLUSIONS: PPCs are a new class of chordotonal organ modulator insecticide for control of piercing-sucking pests. Dimpropyridaz is a PPC proinsecticide that is activated in target insects to secondary amide forms that inhibit the firing of chordotonal organs. The inhibition occurs at a site upstream of TRPVs and is TRPV-independent, providing a novel mode of action for resistance management. © 2023 BASF Corporation. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Subject(s)
Aphids , Insecticides , Animals , Insecticides/pharmacology , Insecta , Amides/pharmacology , Insecticide Resistance
3.
Mol Med ; 28(1): 61, 2022 06 03.
Article in English | MEDLINE | ID: mdl-35659174

ABSTRACT

Botulinum neurotoxins (BoNTs) are highly potent, select agent toxins that inhibit neurotransmitter release at motor nerve terminals, causing muscle paralysis and death by asphyxiation. Other than post-exposure prophylaxis with antitoxin, the only treatment option for symptomatic botulism is intubation and supportive care until recovery, which can require weeks or longer. In previous studies, we reported the FDA-approved drug 3,4-diaminopyridine (3,4-DAP) reverses early botulism symptoms and prolongs survival in lethally intoxicated mice. However, the symptomatic benefits of 3,4-DAP are limited by its rapid clearance. Here we investigated whether 3,4-DAP could sustain symptomatic benefits throughout the full course of respiratory paralysis in lethally intoxicated rats. First, we confirmed serial injections of 3,4-DAP stabilized toxic signs and prolonged survival in rats challenged with 2.5 LD50 BoNT/A. Rebound of toxic signs and death occurred within hours after the final 3,4-DAP treatment, consistent with the short half-life of 3,4-DAP in rats. Based on these data, we next investigated whether the therapeutic benefits of 3,4-DAP could be sustained throughout the course of botulism by continuous infusion. To ensure administration of 3,4-DAP at clinically relevant doses, three infusion dose rates (0.5, 1.0 and 1.5 mg/kg∙h) were identified that produced steady-state serum levels of 3,4-DAP consistent with clinical dosing. We then compared dose-dependent effects of 3,4-DAP on toxic signs and survival in rats intoxicated with 2.5 LD50 BoNT/A. In contrast to saline vehicle, which resulted in 100% mortality, infusion of 3,4-DAP at ≥ 1.0 mg/kg∙h from 1 to 14 d after intoxication produced 94.4% survival and full resolution of toxic signs, without rebound of toxic signs after infusion was stopped. In contrast, withdrawal of 3,4-DAP infusion at 5 d resulted in re-emergence of toxic sign and death within 12 h, confirming antidotal outcomes require sustained 3,4-DAP treatment for longer than 5 d after intoxication. We exploited this novel survival model of lethal botulism to explore neurophysiological parameters of diaphragm paralysis and recovery. While neurotransmission was nearly eliminated at 5 d, neurotransmission was significantly improved at 21 d in 3,4-DAP-infused survivors, although still depressed compared to naïve rats. 3,4-DAP is the first small molecule to reverse systemic paralysis and promote survival in animal models of botulism, thereby meeting a critical treatment need that is not addressed by post-exposure prophylaxis with conventional antitoxin. These data contribute to a growing body of evidence supporting the use of 3,4-DAP to treat clinical botulism.


Subject(s)
Antitoxins , Botulism , Amifampridine/therapeutic use , Animals , Antidotes/pharmacology , Antidotes/therapeutic use , Antitoxins/therapeutic use , Botulism/drug therapy , Mice , Paralysis/drug therapy , Rats
4.
Sci Transl Med ; 13(575)2021 01 06.
Article in English | MEDLINE | ID: mdl-33408188

ABSTRACT

Botulism is caused by a potent neurotoxin that blocks neuromuscular transmission, resulting in death by asphyxiation. Currently, the therapeutic options are limited and there is no antidote. Here, we harness the structural and trafficking properties of an atoxic derivative of botulinum neurotoxin (BoNT) to transport a function-blocking single-domain antibody into the neuronal cytosol where it can inhibit BoNT serotype A (BoNT/A1) molecular toxicity. Post-symptomatic treatment relieved toxic signs of botulism and rescued mice, guinea pigs, and nonhuman primates after lethal BoNT/A1 challenge. These data demonstrate that atoxic BoNT derivatives can be harnessed to deliver therapeutic protein moieties to the neuronal cytoplasm where they bind and neutralize intracellular targets in experimental models. The generalizability of this platform might enable delivery of antibodies and other protein-based therapeutics to previously inaccessible intraneuronal targets.


Subject(s)
Botulinum Toxins, Type A , Botulism , Single-Domain Antibodies , Animals , Botulism/drug therapy , Guinea Pigs , Mice , Models, Animal , Neurotoxins
5.
Arch Toxicol ; 94(11): 3877-3891, 2020 11.
Article in English | MEDLINE | ID: mdl-32691075

ABSTRACT

Organophosphorus (OP) compounds inhibit central and peripheral acetylcholinesterase (AChE) activity, overstimulating cholinergic receptors and causing autonomic dysfunction (e.g., bronchoconstriction, excess secretions), respiratory impairment, seizure and death at high doses. Current treatment for OP poisoning in the United States includes reactivation of OP-inhibited AChE by the pyridinium oxime 2-pyridine aldoxime (2-PAM). However, 2-PAM has a narrow therapeutic index and its efficacy is confined to a limited number of OP agents. The bis-pyridinium oxime MMB4, which is a more potent reactivator than 2-PAM with improved pharmaceutical properties and therapeutic range, is under consideration as a potential replacement for 2-PAM. Similar to other pyridinium oximes, high doses of MMB4 lead to off-target effects culminating in respiratory depression and death. To understand the toxic mechanisms contributing to respiratory depression, we evaluated the effects of MMB4 (0.25-16 mM) on functional and neurophysiological parameters of diaphragm and limb muscle function in rabbits and rats. In both species, MMB4 depressed nerve-elicited muscle contraction by blocking muscle endplate nicotinic receptor currents while simultaneously prolonging endplate potentials by inhibiting AChE. MMB4 increased quantal content, endplate potential rundown and tetanic fade during high frequency stimulation in rat but not rabbit muscles, suggesting species-specific effects on feedback mechanisms involved in sustaining neurotransmission. These data reveal multifactorial effects of MMB4 on cholinergic neurotransmission, with the primary toxic modality being reduced muscle nicotinic endplate currents. Evidence of species-specific effects on neuromuscular function illustrates the importance of comparative toxicology when studying pyridinium oximes and, by inference, other quaternary ammonium compounds.


Subject(s)
Acetylcholinesterase/drug effects , Muscles/drug effects , Organophosphate Poisoning/drug therapy , Oximes/adverse effects , Synaptic Transmission/drug effects , Animals , Cholinesterase Reactivators/adverse effects , Dose-Response Relationship, Drug , Female , Male , Pralidoxime Compounds/therapeutic use , Rabbits , Rats , Rats, Sprague-Dawley , Respiratory Insufficiency/chemically induced , Species Specificity
6.
JCI Insight ; 5(2)2020 01 30.
Article in English | MEDLINE | ID: mdl-31996484

ABSTRACT

Botulinum neurotoxins (BoNTs) are potent neuroparalytic toxins that cause mortality through respiratory paralysis. The approved medical countermeasure for BoNT poisoning is infusion of antitoxin immunoglobulins. However, antitoxins have poor therapeutic efficacy in symptomatic patients; thus, there is an urgent need for treatments that reduce the need for artificial ventilation. We report that the US Food and Drug Administration-approved potassium channel blocker 3,4-diaminopyridine (3,4-DAP) reverses respiratory depression and neuromuscular weakness in murine models of acute and chronic botulism. In ex vivo studies, 3,4-DAP restored end-plate potentials and twitch contractions of diaphragms isolated from mice at terminal stages of BoNT serotype A (BoNT/A) botulism. In vivo, human-equivalent doses of 3,4-DAP reversed signs of severe respiratory depression and restored mobility in BoNT/A-intoxicated mice at terminal stages of respiratory collapse. Multiple-dosing administration of 3,4-DAP improved respiration and extended survival at up to 5 LD50 BoNT/A. Finally, 3,4-DAP reduced gastrocnemius muscle paralysis and reversed respiratory depression in sublethal models of serotype A-, B-, and E-induced botulism. These findings make a compelling argument for repurposing 3,4-DAP to symptomatically treat symptoms of muscle paralysis caused by botulism, independent of serotype. Furthermore, they suggest that 3,4-DAP is effective for a range of botulism symptoms at clinically relevant time points.


Subject(s)
Amifampridine/pharmacology , Amifampridine/therapeutic use , Antitoxins/pharmacology , Antitoxins/therapeutic use , Botulism/drug therapy , Potassium Channel Blockers/pharmacology , Potassium Channel Blockers/therapeutic use , Amifampridine/chemistry , Animals , Antitoxins/chemistry , Botulinum Toxins , Botulinum Toxins, Type A/drug effects , Disease Models, Animal , Female , Lethal Dose 50 , Mice , Muscle, Skeletal , Paralysis/drug therapy , Potassium Channel Blockers/chemistry , Serogroup , United States , United States Food and Drug Administration
7.
Brain Res ; 1693(Pt A): 55-66, 2018 08 15.
Article in English | MEDLINE | ID: mdl-29625118

ABSTRACT

Mutations in the nuclear localization signal of the RNA binding protein FUS cause both Frontotemporal Dementia (FTD) and Amyotrophic Lateral Sclerosis (ALS). These mutations result in a loss of FUS from the nucleus and the formation of FUS-containing cytoplasmic aggregates in patients. To better understand the role of cytoplasmic FUS mislocalization in the pathogenesis of ALS, we identified a population of cholinergic neurons in Drosophila that recapitulate these pathologic hallmarks. Expression of mutant FUS or the Drosophila homolog, Cabeza (Caz), in class IV dendritic arborization neurons results in cytoplasmic mislocalization and axonal transport to presynaptic terminals. Interestingly, overexpression of FUS or Caz causes the progressive loss of neuronal projections, reduction of synaptic mitochondria, and the appearance of large calcium transients within the synapse. Additionally, we find that overexpression of mutant but not wild type FUS results in a reduction in presynaptic Synaptotagmin, an integral component of the neurotransmitter release machinery, and mutant Caz specifically disrupts axonal transport and induces hyperexcitability. These results suggest that FUS/Caz overexpression disrupts neuronal function through multiple mechanisms, and that ALS-causing mutations impair the transport of synaptic vesicle proteins and induce hyperexcitability.


Subject(s)
Drosophila Proteins/physiology , Heterogeneous-Nuclear Ribonucleoprotein Group F-H/physiology , Neuronal Plasticity/physiology , Amyotrophic Lateral Sclerosis/genetics , Amyotrophic Lateral Sclerosis/metabolism , Amyotrophic Lateral Sclerosis/physiopathology , Animals , Animals, Genetically Modified , Cell Nucleus/metabolism , Cytoplasm/metabolism , Dendrites/metabolism , Disease Models, Animal , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Drosophila melanogaster/genetics , Drosophila melanogaster/physiology , Frontotemporal Dementia/genetics , Frontotemporal Dementia/metabolism , Heterogeneous-Nuclear Ribonucleoprotein Group F-H/genetics , Heterogeneous-Nuclear Ribonucleoprotein Group F-H/metabolism , Humans , Motor Neurons/metabolism , Neuronal Plasticity/genetics , Neurons/metabolism , Presynaptic Terminals/metabolism , RNA-Binding Protein FUS/metabolism , RNA-Binding Proteins/metabolism , RNA-Binding Proteins/physiology , Synapses/metabolism , Synaptic Transmission/physiology , Transcription Factor TFIID/metabolism , Transcription Factor TFIID/physiology
8.
Toxicol Appl Pharmacol ; 341: 77-86, 2018 02 15.
Article in English | MEDLINE | ID: mdl-29366638

ABSTRACT

Botulinum neurotoxins (BoNTs) are exceedingly potent neurological poisons that prevent neurotransmitter release from peripheral nerve terminals by cleaving presynaptic proteins required for synaptic vesicle fusion. The ensuing neuromuscular paralysis causes death by asphyxiation. Although no antidotal treatments exist to block toxin activity within the nerve terminal, aminopyridine antagonists of voltage-gated potassium channels have been proposed as symptomatic treatments for botulism toxemia. However, clinical evaluation of aminopyridines as symptomatic treatments for botulism has been inconclusive, in part because mechanisms responsible for reversal of paralysis in BoNT-poisoned nerve terminals are not understood. Here we measured the effects of 3,4-diaminopyridine (DAP) on phrenic nerve-elicited diaphragm contraction and end-plate potentials at various times after intoxication with BoNT serotypes A, B, or E. We found that DAP-mediated increases in quantal content promote neurotransmission from intoxicated nerve terminals through two functionally distinguishable mechanisms. First, DAP increases the probability of neurotransmission at non-intoxicated release sites. This mechanism is serotype-independent, becomes less effective as nerve terminals become progressively impaired, and remains susceptible to ongoing intoxication. Second, DAP elicits persistent production of toxin-resistant endplate potentials from nerve terminals fully intoxicated by BoNT/A, but not serotypes B or E. Since this effect appears specific to BoNT/A intoxication, we propose that DAP treatment enables BoNT/A-cleaved SNAP-25 to productively engage in fusogenic release by increasing the opportunity for low-efficiency fusion events. These findings have important implications for DAP as a botulism therapeutic by defining conditions under which DAP may be clinically effective in reversing botulism symptoms.


Subject(s)
4-Aminopyridine/analogs & derivatives , Botulinum Toxins, Type A/toxicity , Diaphragm/drug effects , Respiratory Paralysis/chemically induced , Respiratory Paralysis/drug therapy , 4-Aminopyridine/pharmacology , 4-Aminopyridine/therapeutic use , Amifampridine , Animals , Diaphragm/physiology , Male , Mice , Mice, Inbred C57BL , Organ Culture Techniques , Potassium Channel Blockers/pharmacology , Potassium Channel Blockers/therapeutic use , Respiratory Paralysis/physiopathology
9.
Sci Rep ; 7(1): 15862, 2017 Nov 20.
Article in English | MEDLINE | ID: mdl-29158500

ABSTRACT

Botulinum neurotoxins (BoNTs) are highly potent toxins that cleave neuronal SNARE proteins required for neurotransmission, causing flaccid paralysis and death by asphyxiation. Currently, there are no clinical treatments to delay or reverse BoNT-induced blockade of neuromuscular transmission. While aminopyridines have demonstrated varying efficacy in transiently reducing paralysis following BoNT poisoning, the precise mechanisms by which aminopyridines symptomatically treat botulism are not understood. Here we found that activity-dependent potentiation of presynaptic voltage-gated calcium channels (VGCCs) underlies 3,4-diaminopyridine (3,4-DAP)-mediated rescue of neurotransmission in central nervous system synapses and mouse diaphragm neuromuscular junctions fully intoxicated by BoNT serotype A. Combinatorial treatments with 3,4-DAP and VGCC agonists proved synergistic in restoring suprathreshold endplate potentials in mouse diaphragms fully intoxicated by BoNT/A. In contrast, synapses fully intoxicated by BoNT serotypes D or E were refractory to synaptic rescue by any treatment. We interpret these data to propose that increasing the duration or extent of VGCC activation prolongs the opportunity for low-efficiency fusion by fusogenic complexes incorporating BoNT/A-cleaved SNAP-25. The identification of VGCC agonists that rescue neurotransmission in BoNT/A-intoxicated synapses provides compelling evidence for potential therapeutic utility in some cases of human botulism.


Subject(s)
Botulinum Toxins, Type A/toxicity , Botulism/genetics , Calcium Channels/genetics , Paralysis/genetics , Synaptosomal-Associated Protein 25/genetics , Amifampridine/metabolism , Animals , Botulinum Toxins, Type A/genetics , Botulism/pathology , Calcium/metabolism , Excitatory Postsynaptic Potentials/genetics , Humans , Mice , Neuromuscular Junction/genetics , Neuromuscular Junction/metabolism , Neurons/metabolism , Neurons/pathology , Paralysis/physiopathology , Serogroup , Synapses/genetics , Synapses/pathology , Synaptic Transmission/genetics
10.
Methods Cell Biol ; 131: 277-309, 2016.
Article in English | MEDLINE | ID: mdl-26794520

ABSTRACT

Proper neuronal function critically depends on efficient intracellular transport and disruption of transport leads to neurodegeneration. Molecular pathways that support or regulate neuronal transport are not fully understood. A greater understanding of these pathways will help reveal the pathological mechanisms underlying disease. Drosophila melanogaster is the premier model system for performing large-scale genetic functional screens. Here we describe methods to carry out primary and secondary genetic screens in Drosophila aimed at identifying novel gene products and pathways that impact neuronal intracellular transport. These screens are performed using whole animal or live cell imaging of intact neural tissue to ensure integrity of neurons and their cellular environment. The primary screen is used to identify gross defects in neuronal function indicative of a disruption in microtubule-based transport. The secondary screens, conducted in both motoneurons and dendritic arborization neurons, will confirm the function of candidate gene products in intracellular transport. Together, the methodologies described here will support labs interested in identifying and characterizing gene products that alter intracellular transport in Drosophila.


Subject(s)
Axonal Transport/genetics , Axons/metabolism , Drosophila melanogaster/metabolism , Dyneins/metabolism , Kinesins/metabolism , Microtubule-Associated Proteins/metabolism , Animals , Axonal Transport/physiology , Dendrites/physiology , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Drosophila melanogaster/genetics , Dynactin Complex , Dyneins/genetics , Larva/metabolism , Microtubules/genetics , Microtubules/metabolism , Neurodegenerative Diseases/pathology , Neuronal Plasticity/genetics , Neuronal Plasticity/physiology , RNA Interference , RNA, Small Interfering/genetics
11.
Nature ; 525(7567): 56-61, 2015 Sep 03.
Article in English | MEDLINE | ID: mdl-26308891

ABSTRACT

The hexanucleotide repeat expansion (HRE) GGGGCC (G4C2) in C9orf72 is the most common cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Recent studies support an HRE RNA gain-of-function mechanism of neurotoxicity, and we previously identified protein interactors for the G4C2 RNA including RanGAP1. A candidate-based genetic screen in Drosophila expressing 30 G4C2 repeats identified RanGAP (Drosophila orthologue of human RanGAP1), a key regulator of nucleocytoplasmic transport, as a potent suppressor of neurodegeneration. Enhancing nuclear import or suppressing nuclear export of proteins also suppresses neurodegeneration. RanGAP physically interacts with HRE RNA and is mislocalized in HRE-expressing flies, neurons from C9orf72 ALS patient-derived induced pluripotent stem cells (iPSC-derived neurons), and in C9orf72 ALS patient brain tissue. Nuclear import is impaired as a result of HRE expression in the fly model and in C9orf72 iPSC-derived neurons, and these deficits are rescued by small molecules and antisense oligonucleotides targeting the HRE G-quadruplexes. Nucleocytoplasmic transport defects may be a fundamental pathway for ALS and FTD that is amenable to pharmacotherapeutic intervention.


Subject(s)
Active Transport, Cell Nucleus/genetics , Cell Nucleus/metabolism , DNA Repeat Expansion/genetics , Open Reading Frames/genetics , Proteins/genetics , Amyotrophic Lateral Sclerosis/genetics , Amyotrophic Lateral Sclerosis/pathology , Animals , Brain/metabolism , Brain/pathology , C9orf72 Protein , Drosophila Proteins/metabolism , Drosophila melanogaster/cytology , Drosophila melanogaster/metabolism , Female , Frontotemporal Dementia/genetics , Frontotemporal Dementia/pathology , G-Quadruplexes , GTPase-Activating Proteins/metabolism , Humans , Induced Pluripotent Stem Cells/cytology , Induced Pluripotent Stem Cells/metabolism , Neurons/metabolism , Neurons/pathology , Nuclear Pore/chemistry , Nuclear Pore/metabolism , Nuclear Proteins/metabolism , Oligonucleotides, Antisense/genetics , RNA/genetics , RNA/metabolism
12.
Hum Mol Genet ; 23(14): 3810-22, 2014 Jul 15.
Article in English | MEDLINE | ID: mdl-24569165

ABSTRACT

Mutations in the RNA binding protein Fused in sarcoma (FUS) are estimated to account for 5-10% of all inherited cases of amyotrophic lateral sclerosis (ALS), but the function of FUS in motor neurons is poorly understood. Here, we investigate the early functional consequences of overexpressing wild-type or ALS-associated mutant FUS proteins in Drosophila motor neurons, and compare them to phenotypes arising from loss of the Drosophila homolog of FUS, Cabeza (Caz). We find that lethality and locomotor phenotypes correlate with levels of FUS transgene expression, indicating that toxicity in developing motor neurons is largely independent of ALS-linked mutations. At the neuromuscular junction (NMJ), overexpression of either wild-type or mutant FUS results in decreased number of presynaptic active zones and altered postsynaptic glutamate receptor subunit composition, coinciding with a reduction in synaptic transmission as a result of both reduced quantal size and quantal content. Interestingly, expression of human FUS downregulates endogenous Caz levels, demonstrating that FUS autoregulation occurs in motor neurons in vivo. However, loss of Caz from motor neurons increases synaptic transmission as a result of increased quantal size, suggesting that the loss of Caz in animals expressing FUS does not contribute to motor deficits. These data demonstrate that FUS/Caz regulates NMJ development and plays an evolutionarily conserved role in modulating the strength of synaptic transmission in motor neurons.


Subject(s)
Drosophila Proteins/metabolism , Drosophila melanogaster/physiology , Motor Neurons/metabolism , Neuromuscular Junction/physiology , RNA-Binding Protein FUS/metabolism , RNA-Binding Proteins/metabolism , Synaptic Transmission , Transcription Factor TFIID/metabolism , Animals , Animals, Genetically Modified , Drosophila Proteins/genetics , Drosophila melanogaster/embryology , Genes, Lethal , Humans , Neuromuscular Junction/embryology , Phenotype , RNA-Binding Protein FUS/genetics , RNA-Binding Proteins/genetics , Transcription Factor TFIID/genetics
13.
Nat Neurosci ; 16(9): 1238-47, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23912945

ABSTRACT

Topoisomerases are crucial for solving DNA topological problems, but they have not been linked to RNA metabolism. Here we show that human topoisomerase 3ß (Top3ß) is an RNA topoisomerase that biochemically and genetically interacts with FMRP, a protein that is deficient in fragile X syndrome and is known to regulate the translation of mRNAs that are important for neuronal function, abnormalities of which are linked to autism. Notably, the FMRP-Top3ß interaction is abolished by a disease-associated mutation of FMRP, suggesting that Top3ß may contribute to the pathogenesis of mental disorders. Top3ß binds multiple mRNAs encoded by genes with neuronal functions linked to schizophrenia and autism. Expression of one such gene, that encoding protein tyrosine kinase 2 (ptk2, also known as focal adhesion kinase or FAK), is reduced in the neuromuscular junctions of Top3ß mutant flies. Synapse formation is defective in Top3ß mutant flies and mice, as well as in FMRP mutant flies and mice. Our findings suggest that Top3ß acts as an RNA topoisomerase and works with FMRP to promote the expression of mRNAs that are crucial for neurodevelopment and mental health.


Subject(s)
DNA Topoisomerases, Type I/metabolism , Fragile X Mental Retardation Protein/metabolism , Neuromuscular Junction/genetics , Animals , Animals, Genetically Modified , Cells, Cultured , Chickens , DNA Topoisomerases, Type I/deficiency , DNA Topoisomerases, Type I/genetics , Drosophila , Drosophila Proteins/genetics , Embryo, Mammalian , Eye/cytology , Eye/metabolism , Fragile X Mental Retardation Protein/genetics , Gene Expression Regulation/genetics , Humans , Mice , Mice, Inbred C57BL , Nerve Tissue Proteins/metabolism , Neurogenesis/genetics , Neurons/physiology , RNA-Binding Proteins/metabolism , Transfection
14.
J Cell Sci ; 125(Pt 16): 3752-64, 2012 Aug 15.
Article in English | MEDLINE | ID: mdl-22573823

ABSTRACT

Neuronal function depends on the retrograde relay of growth and survival signals from the synaptic terminal, where the neuron interacts with its targets, to the nucleus, where gene transcription is regulated. Activation of the Bone Morphogenetic Protein (BMP) pathway at the Drosophila larval neuromuscular junction results in nuclear accumulation of the phosphorylated form of the transcription factor Mad in the motoneuron nucleus. This in turn regulates transcription of genes that control synaptic growth. How BMP signaling at the synaptic terminal is relayed to the cell body and nucleus of the motoneuron to regulate transcription is unknown. We show that the BMP receptors are endocytosed at the synaptic terminal and transported retrogradely along the axon. Furthermore, this transport is dependent on BMP pathway activity, as it decreases in the absence of ligand or receptors. We further demonstrate that receptor traffic is severely impaired when Dynein motors are inhibited, a condition that has previously been shown to block BMP pathway activation. In contrast to these results, we find no evidence for transport of phosphorylated Mad along the axons, and axonal traffic of Mad is not affected in mutants defective in BMP signaling or retrograde transport. These data support a model in which complexes of activated BMP receptors are actively transported along the axon towards the cell body to relay the synaptogenic signal, and that phosphorylated Mad at the synaptic terminal and cell body represent two distinct molecular populations.


Subject(s)
Axonal Transport/physiology , Bone Morphogenetic Protein Receptors/metabolism , Drosophila Proteins/metabolism , Motor Neurons/metabolism , Presynaptic Terminals/metabolism , Animals , Axonemal Dyneins/metabolism , Axons/metabolism , Bone Morphogenetic Protein Receptors/genetics , DNA-Binding Proteins/metabolism , Drosophila , Drosophila Proteins/genetics , Endosomes/genetics , Endosomes/metabolism , Motor Neurons/cytology , Phosphorylation , Protein Serine-Threonine Kinases/metabolism , Receptors, Cell Surface/genetics , Receptors, Cell Surface/metabolism , Recombinant Fusion Proteins/analysis , Recombinant Fusion Proteins/metabolism , Signal Transduction , Transcription Factors/metabolism
15.
Neuron ; 74(2): 344-60, 2012 Apr 26.
Article in English | MEDLINE | ID: mdl-22542187

ABSTRACT

p150(Glued) is the major subunit of dynactin, a complex that functions with dynein in minus-end-directed microtubule transport. Mutations within the p150(Glued) CAP-Gly microtubule-binding domain cause neurodegenerative diseases through an unclear mechanism. A p150(Glued) motor neuron degenerative disease-associated mutation introduced into the Drosophila Glued locus generates a partial loss-of-function allele (Gl(G38S)) with impaired neurotransmitter release and adult-onset locomotor dysfunction. Disruption of the p150(Glued) CAP-Gly domain in neurons causes a specific disruption of vesicle trafficking at terminal boutons (TBs), the distal-most ends of synapses. Gl(G38S) larvae accumulate endosomes along with dynein and kinesin motor proteins within swollen TBs, and genetic analyses show that kinesin and p150(Glued) function cooperatively at TBs to coordinate transport. Therefore, the p150(Glued) CAP-Gly domain regulates dynein-mediated retrograde transport at synaptic termini, and this function of dynactin is disrupted by a mutation that causes motor neuron disease.


Subject(s)
Microtubule-Associated Proteins/metabolism , Mutation/genetics , Presynaptic Terminals/physiology , Animals , Animals, Genetically Modified , Drosophila , Drosophila Proteins/genetics , Dynactin Complex , Electrophysiology , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Kinesins/genetics , Kinesins/metabolism , Larva , Membrane Potentials/genetics , Microtubule-Associated Proteins/genetics , Models, Biological , Motor Neuron Disease/genetics , Motor Neurons/physiology , Neuromuscular Junction/genetics , Neuromuscular Junction/physiology , Photobleaching , Protein Binding/genetics , Protein Interaction Domains and Motifs/genetics , Protein Transport/genetics , Synaptic Transmission/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...