Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
PNAS Nexus ; 3(6): pgae202, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38840799

ABSTRACT

To assess cellular behavior within heterogeneous tissues, such as bone, skin, and nerves, scaffolds with biophysical gradients are required to adequately replicate the in vivo interaction between cells and their native microenvironment. In this study, we introduce a strategy for depositing ultrathin films comprised of laminin-111 with precisely controlled biophysical gradients onto planar substrates using the Langmuir-Blodgett (LB) technique. The gradient is created by controlled desynchronization of the barrier compression and substrate withdrawal speed during the LB deposition process. Characterization of the films was performed using techniques such as atomic force microscopy and confocal fluorescence microscopy, enabling the comprehensive analysis of biophysical parameters along the gradient direction. Furthermore, human adipose-derived stem cells were seeded onto the gradient films to investigate the influence of protein density on cell attachment, showing that the distribution of the cells can be modulated by the arrangement of the laminin at the air-water interface. The presented approach not only allowed us to gain insights into the intricate interplay between biophysical cues and cell behavior within complex tissue environments, but it is also suited as a screening approach to determine optimal protein concentrations to achieve a target cellular output.

2.
Small ; : e2312058, 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38577827

ABSTRACT

While in nature, molecular chirality enables the formation of chiral macroscopic structures through crystallization and self-organization, such a transfer of molecular information to higher hierarchical levels is rarely observed in vitro. Here, the study reports on single crystals of microbially synthesized polyester poly[(R)-3-hydroxybutyrate], which have chiral habits when grown at the air-water interface, in analogy to the 2D crystallization of chiral lipids such as DPPC. Depending on the crystallization conditions, the chiral single crystals either undergo a transition into fiber-like structures, orassemble into larger superstructures with a uniform sense of rotation.

3.
Int J Biol Macromol ; 263(Pt 1): 130188, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38373562

ABSTRACT

Plastic pollution is the biggest environmental concern of our time. Breakdown products like micro- and nano-plastics inevitably enter the food chain and pose unprecedented health risks. In this scenario, bio-based and biodegradable plastic alternatives have been given a momentum aiming to bridge a transition towards a more sustainable future. Polyhydroxyalkanoates (PHAs) are one of the few thermoplastic polymers synthesized 100 % via biotechnological routes which fully biodegrade in common natural environments. Poly(hydroxybutyrate-co-hydroxyhexanoate) [P(HB-co-HHx)] is a PHA copolymer with great potential for the commodity polymers industry, as its mechanical properties can be tailored through fine-tuning of its molar HHx content. We have recently developed a strategy that enables for reliable tailoring of the monomer content of P(HB-co-HHx). Nevertheless, there is often a lack of comprehensive investigation of the material properties of PHAs to evaluate whether they actually mimic the functionalities of conventional plastics. We present a detailed study of P(HB-co-HHx) copolymers with low to moderate hydroxyhexanoate content to understand how the HHx monomer content influences the thermal and mechanical properties and to link those to their abiotic degradation. By increasing the HHx fractions in the range of 2 - 14 mol%, we impart an extension of the processing window and application range as the melting temperature (Tm) and glass temperature (Tg) of the copolymers decrease from Tm 165 °C to 126 °C, Tg 4 °C to -5.9 °C, accompanied by reduced crystallinity from 54 % to 20 %. Elongation at break was increased from 5.7 % up to 703 % at 14 mol% HHx content, confirming that the range examined was sufficiently large to obtain ductile and brittle copolymers, while tensile strength was maintained throughout the studied range. Finally, accelerated abiotic degradation was shown to be slowed down with an increasing HHx fraction decreasing from 70 % to 55 % in 12 h.


Subject(s)
Caproates , Polyhydroxyalkanoates , 3-Hydroxybutyric Acid/metabolism , Hydroxybutyrates , Biotechnology
4.
Int J Biol Macromol ; 253(Pt 2): 126760, 2023 Dec 31.
Article in English | MEDLINE | ID: mdl-37683751

ABSTRACT

Biodegradable polyesters, such as polyhydroxyalkanoates (PHAs), are having a tremendous impact on biomedicine. However, these polymers lack functional moieties to impart functions like targeted delivery of molecules. Inspired by native GAPs, such as phasins and their polymer-binding and surfactant properties, we generated small material binding peptides (MBPs) for polyester surface functionalization using a rational approach based on amphiphilicity. Here, two peptides of 48 amino acids derived from phasins PhaF and PhaI from Pseudomonas putida, MinP and the novel-designed MinI, were assessed for their binding towards two types of PHAs, PHB and PHOH. In vivo, fluorescence studies revealed selective binding towards PHOH, whilst in vitro binding experiments using the Langmuir-Blodgett technique coupled to ellipsometry showed KD in the range of nM for all polymers and MBPs. Marked morphological changes of the polymer surface upon peptide adsorption were shown by BAM and AFM for PHOH. Moreover, both MBPs were successfully used to immobilize cargo proteins on the polymer surfaces. Altogether, this work shows that by redesigning the amphiphilicity of phasins, a high affinity but lower specificity to polyesters can be achieved in vitro. Furthermore, the MBPs demonstrated binding to PET, showing potential to bind cargo molecules also to synthetic polyesters.


Subject(s)
Polyhydroxyalkanoates , Pseudomonas putida , Polyesters/metabolism , Bacterial Proteins/chemistry , Polyhydroxyalkanoates/chemistry , Peptides/metabolism , Pseudomonas putida/metabolism
5.
J Colloid Interface Sci ; 636: 176-183, 2023 Apr 15.
Article in English | MEDLINE | ID: mdl-36630855

ABSTRACT

HYPOTHESIS: Injectable hydrogels are important in situ forming implants for tissue regeneration at damaged sites. Understanding the behavior of these systems in a complex in vivo environment remains a challenge. Ultrathin films as 2D model systems are expected to provide fundamental insights into formation and (bio)degradation at material-liquid interfaces, and are also applicable as bioresponsive coatings. EXPERIMENTS: Hydrogel ultrathin films are prepared by covalently cross-linking four-arm PEG macromers with maleimide end-groups (PEG4MAL) at alkaline pH using two different types of dithiol-bearing cross-linkers - thio-depsipeptide (TDP) or 3,6-Dioxa-1,8-octanedithiol (DODT). This thiol-Michael addition "click" reaction is carried out at the air-water interface using the Langmuir technique. Morphological observation in real time is carried out by Brewster angle microscopy (BAM) and in coatings using atomic force microscopy (AFM). Stability against enzymatic and oxidative degradation is evaluated in the same setup. FINDINGS: Non-cross-linked PEG or PEG incubated with cross-linkers at slightly acidic pH desorbs from the interface over time. Cross-linking of PEG at alkaline pH renders 2D hydrogel networks (thickness <1 nm) that are stable against desorption. They are easily transferrable onto solid mica surfaces, forming homogenous coatings as revealed by AFM. The type of dithiol cross-linker used to form the branching centers influences the degradability of these 2D hydrogel networks in the presence of lipase, peroxides, or bases. For example, enzymatic degradation of the 2D hydrogel networks can be switched "on" or "off" depending on the cleavable sites in the cross-linkers.

6.
Chem Phys Lipids ; 248: 105236, 2022 10.
Article in English | MEDLINE | ID: mdl-36007625

ABSTRACT

In order to provide the fundamental information about the interactions of common anionic surfactants with the basic unsaturated phospholipids the influence of three cationic (dodecyltrimethylammonium bromide, DTAB; tetradecyltrimethylammonium bromide, TTAB and hexadecyltrimethylamonium bromide, CTAB) and one anionic (sodium dodecylsulfate, SDS) surfactants on the properties of the 1-palmitoyl-2-oleoyl-glycero-3-phosphocholine (POPC) and 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) layers was investigated. The studies proved that a tiny amount of the ionic surfactant added to the already synthesized liposome suspension is sufficient to change the zeta potential of the POPC and DOPC liposomes significantly. This impact increases with the surfactant concentration, the alkyl chain length of the surfactant and the degree of lipid saturation. Moreover, this effect is greater for the anionic surfactant than for the cationic one of the same alkyl chain length. The observed findings were confirmed in the course of the research carried out with the use of the corresponding Langmuir monolayers where the surface pressure - mean area isotherms, the compressibility modulus - surface pressure dependences, the monolayer penetration tests, the surface potential - mean molecular area isotherms and Brewster angle microscopy were discussed. It was found that the presence of the surfactants shifts the isotherms towards larger molecular area, to the higher extent for the SDS than DTAB. This effect increases with the increasing surfactant concentration in the subphase. Moreover, the investigated surfactants remain in the monolayer even at high surface pressure. Nevertheless, no effect on the morphology of the POPC and DOPC monolayers was detected from the BAM images. The surface potential and surface charge of the liposomes calculated on the basis of the zeta potential results reflected the interactions between the surfactant and the lipid layers.


Subject(s)
Liposomes , Surface-Active Agents , Bromides , Cations , Cetrimonium , Phospholipids , Phosphorylcholine , Quaternary Ammonium Compounds , Sodium
7.
Chem Catal ; 2(12): 3573-3589, 2022 Dec 15.
Article in English | MEDLINE | ID: mdl-37350932

ABSTRACT

Enzymatic hydrolysis holds great promise for plastic waste recycling and upcycling. The interfacial catalysis mode, and the variability of polymer specimen properties under different degradation conditions, add to the complexity and difficulty of understanding polymer cleavage and engineering better biocatalysts. We present a systemic approach to studying the enzyme-catalyzed surface erosion of poly(ethylene terephthalate) (PET) while monitoring/controlling operating conditions in real time with simultaneous detection of mass loss and changes in viscoelastic behavior. PET nanofilms placed on water showed a porous morphology and a thickness-dependent glass transition temperature (Tg) between 40°C and 44°C, which is >20°C lower than the Tg of bulk amorphous PET. Hydrolysis by a dual-enzyme system containing thermostabilized variants of Ideonella sakaiensis PETase and MHETase resulted in a maximum depolymerization of 70% in 1 h at 50°C. We demonstrate that increased accessible surface area, amorphization, and Tg reduction speed up PET degradation while simultaneously lowering the threshold for degradation-induced crystallization.

8.
MRS Energy Sustain ; 9(1): 28-34, 2022.
Article in English | MEDLINE | ID: mdl-37521367

ABSTRACT

Highlights: The production and consumption of commodity polymers have been an indispensable part of the development of our modern society. Owing to their adjustable properties and variety of functions, polymer-based materials will continue playing important roles in achieving the Sustainable Development Goals (SDG)s, defined by the United Nations, in key areas such as healthcare, transport, food preservation, construction, electronics, and water management. Considering the serious environmental crisis, generated by increasing consumption of plastics, leading-edge polymers need to incorporate two types of functions: Those that directly arise from the demands of the application (e.g. selective gas and liquid permeation, actuation or charge transport) and those that enable minimization of environmental harm, e.g., through prolongation of the functional lifetime, minimization of material usage, or through predictable disintegration into non-toxic fragments. Here, we give examples of how the incorporation of a thoughtful combination of properties/functions can enhance the sustainability of plastics ranging from material design to waste management. We focus on tools to measure and reduce the negative impacts of plastics on the environment throughout their life cycle, the use of renewable sources for their synthesis, the design of biodegradable and/or recyclable materials, and the use of biotechnological strategies for enzymatic recycling of plastics that fits into a circular bioeconomy. Finally, we discuss future applications for sustainable plastics with the aim to achieve the SDGs through international cooperation. Abstract: Leading-edge polymer-based materials for consumer and advanced applications are necessary to achieve sustainable development at a global scale. It is essential to understand how sustainability can be incorporated in these materials via green chemistry, the integration of bio-based building blocks from biorefineries, circular bioeconomy strategies, and combined smart and functional capabilities.

9.
J Control Release ; 319: 276-284, 2020 03 10.
Article in English | MEDLINE | ID: mdl-31884098

ABSTRACT

Poly(lactide-co-glycolide)s are commercially available degradable implant materials, which are typically selected based on specifications given by the manufacturer, one of which is their molecular weight. Here, we address the question whether variations in the chain length and their distribution affect the degradation behavior of Poly[(rac-lactide)-co-glycolide]s (PDLLGA). The hydrolysis was studied in ultrathin films at the air-water interface in order to rule out any morphological effects. We found that both for purely hydrolytic degradation as well as under enzymatic catalysis, the molecular weight has very little effect on the overall degradation kinetics of PDLLGAs. The quantitative analysis suggested a random scission mechanism. The monolayer experiments showed that an acidic micro-pH does not accelerate the degradation of PDLLGAs, in contrast to alkaline conditions. The degradation experiments were combined with interfacial rheology measurements, which showed a drastic decrease of the viscosity at little mass loss. The extrapolated molecular weight behaved similar to the viscosity, dropping to a value near to the solubility limit of PDLLGA oligomers before mass loss set in. This observation suggests a solubility controlled degradation of PDLLGA. Conclusively, the molecular weight affects the degradation of PDLLGA devices mostly in indirect ways, e.g. by determining their morphology and porosity during fabrication. Our study demonstrates the relevance of the presented Langmuir degradation method for the design of controlled release systems.


Subject(s)
Lactic Acid , Polyglycolic Acid , Molecular Weight , Polylactic Acid-Polyglycolic Acid Copolymer , Solubility
10.
Biomacromolecules ; 21(2): 761-771, 2020 02 10.
Article in English | MEDLINE | ID: mdl-31841314

ABSTRACT

Polyhydroxyalkanoates (PHAs) have attracted attention as degradable (co)polyesters which can be produced by microorganisms with variations in the side chain. This structural variation influences not only the thermomechanical properties of the material but also its degradation behavior. Here, we used Langmuir monolayers at the air-water (A-W) interface as suitable models for evaluating the abiotic degradation of two PHAs with different side-chain lengths and crystallinity. By controlling the polymer state (semicrystalline, amorphous), the packing density, the pH, and the degradation mechanism, we could draw several significant conclusions. (i) The maximum degree of crystallinity for a PHA film to be efficiently degraded up to pH = 12.3 is 40%. (ii) PHA made of repeating units with shorter side-chain length are more easily hydrolyzed under alkaline conditions. The efficiency of alkaline hydrolysis decreased by about 65% when the polymer was 40% crystalline. (iii) In PHA films with a relatively high initial crystallinity, abiotic degradation initiated a chemi-crystallization phenomenon, detected as an increase in the storage modulus (E'). This could translate into an increase in brittleness and reduction in the material degradability. Finally, we demonstrate the stability of the measurement system for long-term experiments, which allows degradation conditions for polymers that could closely simulate real-time degradation.


Subject(s)
Crystallization/methods , Polyesters/chemistry , Polyhydroxyalkanoates/chemistry , Pseudomonas putida , Hydrolysis , Polyesters/metabolism , Polyhydroxyalkanoates/metabolism , Pseudomonas putida/metabolism , Rheology/methods , Stress, Physiological/drug effects , Stress, Physiological/physiology , Surface Properties
11.
Biomacromolecules ; 20(9): 3242-3252, 2019 09 09.
Article in English | MEDLINE | ID: mdl-30990311

ABSTRACT

Phasins are amphiphilic proteins located at the polymer-cytoplasm interface of bacterial polyhydroxyalkanoates (PHA). The immobilization of phasins on biomaterial surfaces is a promising way to enhance the hydrophilicity and supply cell-directing elements in bioinstructing processes. Optimizing the physical adsorption of phasins requires deep insights into molecular processes during polymer-protein interactions to preserve their structural conformation while optimizing surface coverage. Here, the assembly, organization, and stability of phasin PhaF from Pseudomonas putida at interfaces is disclosed. The Langmuir technique, combined with in situ microscopy and spectroscopic methods, revealed that PhaF forms stable and robust monolayers at different temperatures, with an almost flat orientation of its α-helix at the air-water interface. PhaF adsorption onto preformed monolayers of poly[(3-R-hydroxyoctanoate)-co-(3-R-hydroxyhexanoate)] (PHOHHx), yields stable mixed layers below π = ∼15.7 mN/m. Further insertion induces a molecular reorganization. PHOHHx with strong surface hydrophobicity is a more adequate substrate for PhaF adsorption than the less hydrophobic poly[(rac-lactide)-co-glycolide] (PLGA). The observed orientation of the main axis of the protein in relation to copolyester interfaces ensures the best exposure of the hydrophobic residues, providing a suitable coating strategy for polymer functionalization.


Subject(s)
Plant Lectins/chemistry , Polyhydroxyalkanoates/chemistry , Polymers/chemistry , Proteins/chemistry , Adsorption , Cytoplasm/chemistry , Cytoplasm/genetics , Hydrophobic and Hydrophilic Interactions , Proteins/genetics , Pseudomonas putida/chemistry , Surface Properties , Surface-Active Agents/chemistry
12.
Biomed Mater ; 14(3): 034103, 2019 04 02.
Article in English | MEDLINE | ID: mdl-30836335

ABSTRACT

Hydroxyl terminated oligo(ε-caprolactone) (OCL) monolayers were reversibly cross-linked forming two dimensional networks (2D) at the air-water interface. The equilibrium reaction with glyoxal as the cross-linker is pH-sensitive. Pronounced contraction in the area of the prepared 2D OCL films in dependence of surface pressure and time revealed the process of the reaction. Cross-linking inhibited crystallization and retarded enzymatic degradation of the OCL film. Altering the subphase pH led to a cleavage of the covalent acetal cross-links. The reversibility of the covalent acetal cross-links was proved by observing an identical isotherm as non-cross-linked sample. Besides as model systems, these customizable reversible OCL 2D networks are intended for use as pH responsive drug delivery systems or functionalized cell culture substrates.


Subject(s)
Biocompatible Materials/chemistry , Caproates/chemistry , Glyoxal/chemistry , Lactones/chemistry , Water/chemistry , Cross-Linking Reagents/chemistry , Crystallization , Drug Delivery Systems , Hydrogen-Ion Concentration , Lipase/chemistry , Microscopy/methods , Molecular Structure , Polyesters/chemistry , Polymers/chemistry , Spectrophotometry, Infrared , Surface Properties , Tissue Engineering/methods
13.
Macromol Rapid Commun ; 40(1): e1800611, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30387219

ABSTRACT

Langmuir monolayers provide a fast and elegant route to analyze the degradation behavior of biodegradable polymer materials. In contrast to bulk materials, diffusive transport of reactants and reaction products in the (partially degraded) material can be neglected at the air-water interface, allowing for the study of molecular degradation kinetics in experiments taking less than a day and in some cases just a few minutes, in contrast to experiments with bulk materials that can take years. Several aspects of the biodegradation behavior of polymer materials, such as the interaction with biomolecules and degradation products, are directly observable. Expanding the technique with surface-sensitive instrumental techniques enables evaluating the evolution of the morphology, chemical composition, and the mechanical properties of the degrading material in situ. The potential of the Langmuir monolayer degradation technique as a predictive tool for implant degradation when combined with computational methods is outlined, and related open questions and strategies to overcome these challenges are pointed out.


Subject(s)
Biocompatible Materials/metabolism , Polymers/metabolism , Biocompatible Materials/chemistry , Kinetics , Molecular Dynamics Simulation , Polymers/chemistry
14.
Biomed Mater ; 14(2): 024101, 2019 01 03.
Article in English | MEDLINE | ID: mdl-30524033

ABSTRACT

In biomaterial development, the design of material surfaces that mimic the extra-cellular matrix (ECM) in order to achieve favorable cellular instruction is rather challenging. Collagen-type IV (Col-IV), the major scaffolding component of Basement Membranes (BM), a specialized ECM with multiple biological functions, has the propensity to form networks by self-assembly and supports adhesion of cells such as endothelial cells or stem cells. The preparation of biomimetic Col-IV network-like layers to direct cell responses is difficult. We hypothesize that the morphology of the layer, and especially the density of the available adhesion sites, regulates the cellular adhesion to the layer. The Langmuir monolayer technique allows for preparation of thin layers with precisely controlled packing density at the air-water (A-W) interface. Transferring these layers onto cell culture substrates using the Langmuir-Schäfer (LS) technique should therefore provide a pathway for preparation of BM mimicking layers with controlled cell adherence properties. In situ characterization using ellipsometry and polarization modulation-infrared reflection absorption spectroscopy of Col-IV layer during compression at the A-W interface reveal that there is linear increase of surface molecule concentration with negligible orientational changes up to a surface pressure of 25 mN m-1. Smooth and homogeneous Col-IV network-like layers are successfully transferred by LS method at 15 mN m-1 onto poly(ethylene terephthalate) (PET), which is a common substrate for cell culture. In contrast, the organization of Col-IV on PET prepared by the traditionally employed solution deposition method results in rather inhomogeneous layers with the appearance of aggregates and multilayers. Progressive increase in the number of early adherent mesenchymal stem cells (MSCs) after 24 h by controlling the areal Col-IV density by LS transfer at 10, 15 and 20 mN m-1 on PET is shown. The LS method offers the possibility to control protein characteristics on biomaterial surfaces such as molecular density and thereby, modulate cell responses.


Subject(s)
Biocompatible Materials/chemistry , Cell Culture Techniques , Collagen Type IV/chemistry , Stem Cells/cytology , Adipose Tissue , Biomimetics , Cell Adhesion , Collagen Type I/chemistry , Endothelial Cells/metabolism , Extracellular Matrix/metabolism , Humans , Hydrogen-Ion Concentration , Materials Testing , Mesenchymal Stem Cells/cytology , Microscopy, Atomic Force , Polyethylene Terephthalates/chemistry , Refractometry , Surface Properties , Wettability
15.
Beilstein J Nanotechnol ; 7: 784-98, 2016.
Article in English | MEDLINE | ID: mdl-27335767

ABSTRACT

We have investigated the potential of polymers containing precisely spaced side-branches for thin film applications, particularly in the context of organic electronics. Upon crystallization, the side-branches were excluded from the crystalline core of a lamellar crystal. Thus, the surfaces of these crystals were covered by side-branches. By using carboxyl groups as side-branches, which allow for chemical reactions, we could functionalize the crystal with semiconducting molecules. Here, we compare properties of crystals differing in size: small nanocrystals and large single crystals. By assembling nanocrystals on a Langmuir trough, large areas could be covered by monolayers consisting of randomly arranged nanocrystals. Alternatively, we used a method based on local supersaturation to grow large area single crystals of the precisely side-branched polymer from solution. Attachment of the semiconducting molecules to the lamellar surface of large single crystals was possible, however, only after an appropriate annealing procedure. As a function of the duration of the grafting process, the morphology of the resulting layer of semiconducting molecules changed from patchy to compact.

16.
Nanotechnology ; 23(41): 415302, 2012 Oct 19.
Article in English | MEDLINE | ID: mdl-23018599

ABSTRACT

Molecular oxygen etching of HOPG surfaces prepatterned by Ga(+) focused-ion-beam irradiation (FIB) has been used to generate large-area arrays of nanometer-sized graphite blocks. AFM and SEM imaging show that structures with lateral sizes down to ~100 nm and heights of between 30 and 55 nm can be routinely fabricated. The trenches separating the graphite blocks form in the early oxidation stages via preferential gasification (into CO and CO(2)) of the gridlike amorphized carbon regions written by FIB. In the later oxidative etching stages, gasification of the graphite nanoprism faces laterally terminating the graphite blocks becomes the major reaction channel. Correspondingly, graphite blocks are (further) reduced in lateral extent while the trenches in between are widened. Raman and photoionization spectroscopies indicate that the quality of the topmost nG sheet(s) covering the blocks also decreases with increasing etching time-as the size and lateral density of defect-mediated etch pits increases. nG block arrays are useful substrates with which to probe the size-dependent properties of nanographene, as they comprise large numbers of uniform sheets (ca. 4 × 10(10) cm(-2) for an array of 0.5 × 0.5 µm(2)) thus allowing for the application of area-integrating spectroscopic methods. We demonstrate this by examining the Raman features of nG block arrays which include a graphene-rim-region fingerprint mode. Individual nG sheets can be exfoliated from nG stacks by means of electron-irradiation-induced charging. We have explored a number of printing/manipulation strategies aimed at controllable electromechanical transfer of nG sheet arrays to silicon wafers.

SELECTION OF CITATIONS
SEARCH DETAIL
...