Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Synth Biol ; 13(3): 781-791, 2024 03 15.
Article in English | MEDLINE | ID: mdl-38423534

ABSTRACT

In order to recapitulate complex eukaryotic compartmentalization, synthetic biology aims to recreate cellular membrane-lined compartments from the bottom-up. Many important cellular organelles and cell-produced extracellular vesicles are in the size range of several hundreds of nanometers. Although attaining a fundamental characterization and mimicry of their cellular functions is a compelling goal, the lack of methods for controlled vesicle formation in this size range has hindered full understanding. Here, we show the optimization of a simple and efficient protocol for the production of large unilamellar vesicles (LUVs) with a median diameter in the range of 450-550 nm with high purity. Importantly, we rely on commercial reagents and common laboratory equipment. We thoroughly characterize the influence of different experimental parameters on the concentration and size of the resulting vesicles and assess changes in their lipid composition and surface charge. We provide guidance for researchers to optimize LUV production further to suit specific applications.


Subject(s)
Liposomes , Unilamellar Liposomes
2.
Methods Mol Biol ; 2654: 263-276, 2023.
Article in English | MEDLINE | ID: mdl-37106188

ABSTRACT

Extracellular vesicles (EVs) are lipid membrane-enclosed compartments released by cells for intercellular communication in homeostasis and disease. Studies have shown great therapeutic potential of EVs, including but not limited to regenerative and immunomodulatory therapies. Additionally, EVs are promising next-generation drug delivery systems due to their biocompatibility, low immunogenicity, and inherent target specificity. However, clinical application of EVs is so far limited due to challenges in scaling up production, high heterogeneity, batch-to-batch variation, and limited control over composition. Although attaining a fundamental characterization of EVs' functions is a compelling goal, these limitations have hindered a full understanding. Therefore, there is rising interest in exploiting the beneficial properties of EVs while gaining better control over their production and composition. Herein, we describe a method for the bottom-up assembly of bioinspired, fully synthetic vesicles that mimic the most important biophysical and biochemical properties of natural EVs.


Subject(s)
Extracellular Vesicles , Drug Delivery Systems , Cell Communication , Immunomodulation
3.
Nat Commun ; 13(1): 868, 2022 02 14.
Article in English | MEDLINE | ID: mdl-35165285

ABSTRACT

SARS-CoV-2 infection is a major global public health concern with incompletely understood pathogenesis. The SARS-CoV-2 spike (S) glycoprotein comprises a highly conserved free fatty acid binding pocket (FABP) with unknown function and evolutionary selection advantage1,2. Deciphering FABP impact on COVID-19 progression is challenged by the heterogenous nature and large molecular variability of live virus. Here we create synthetic minimal virions (MiniVs) of wild-type and mutant SARS-CoV-2 with precise molecular composition and programmable complexity by bottom-up assembly. MiniV-based systematic assessment of S free fatty acid (FFA) binding reveals that FABP functions as an allosteric regulatory site enabling adaptation of SARS-CoV-2 immunogenicity to inflammation states via binding of pro-inflammatory FFAs. This is achieved by regulation of the S open-to-close equilibrium and the exposure of both, the receptor binding domain (RBD) and the SARS-CoV-2 RGD motif that is responsible for integrin co-receptor engagement. We find that the FDA-approved drugs vitamin K and dexamethasone modulate S-based cell binding in an FABP-like manner. In inflammatory FFA environments, neutralizing immunoglobulins from human convalescent COVID-19 donors lose neutralization activity. Empowered by our MiniV technology, we suggest a conserved mechanism by which SARS-CoV-2 dynamically couples its immunogenicity to the host immune response.


Subject(s)
COVID-19/immunology , Fatty Acids/immunology , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Virion/immunology , A549 Cells , Allosteric Site/genetics , Amino Acid Sequence , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Binding Sites/genetics , COVID-19/metabolism , COVID-19/virology , Cells, Cultured , Cryoelectron Microscopy/methods , Electron Microscope Tomography/methods , Fatty Acid-Binding Proteins/immunology , Fatty Acid-Binding Proteins/metabolism , Fatty Acids/metabolism , Humans , MCF-7 Cells , Microscopy, Confocal/methods , Protein Binding , SARS-CoV-2/metabolism , SARS-CoV-2/physiology , Sequence Homology, Amino Acid , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism , Virion/metabolism , Virion/ultrastructure
4.
EMBO J ; 41(4): e109175, 2022 02 15.
Article in English | MEDLINE | ID: mdl-34994471

ABSTRACT

Cellular proteins begin to fold as they emerge from the ribosome. The folding landscape of nascent chains is not only shaped by their amino acid sequence but also by the interactions with the ribosome. Here, we combine biophysical methods with cryo-EM structure determination to show that folding of a ß-barrel protein begins with formation of a dynamic α-helix inside the ribosome. As the growing peptide reaches the end of the tunnel, the N-terminal part of the nascent chain refolds to a ß-hairpin structure that remains dynamic until its release from the ribosome. Contacts with the ribosome and structure of the peptidyl transferase center depend on nascent chain conformation. These results indicate that proteins may start out as α-helices inside the tunnel and switch into their native folds only as they emerge from the ribosome. Moreover, the correlation of nascent chain conformations with reorientation of key residues of the ribosomal peptidyl-transferase center suggest that protein folding could modulate ribosome activity.


Subject(s)
Cold Shock Proteins and Peptides/chemistry , Cold Shock Proteins and Peptides/metabolism , Escherichia coli Proteins/chemistry , Escherichia coli Proteins/metabolism , Circular Dichroism , Cold Shock Proteins and Peptides/genetics , Cryoelectron Microscopy , Escherichia coli/genetics , Escherichia coli/metabolism , Escherichia coli Proteins/genetics , Models, Molecular , Protein Biosynthesis , Protein Conformation, alpha-Helical , Protein Conformation, beta-Strand , Protein Folding , Protein Processing, Post-Translational , Ribosomes/genetics , Ribosomes/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...