Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
mSystems ; 6(2)2021 Mar 23.
Article in English | MEDLINE | ID: mdl-33758031

ABSTRACT

Microbiome sequence data have been used to characterize Crohn's disease (CD) and ulcerative colitis (UC). Based on these data, we have previously identified microbiomarkers at the genus level to predict CD and CD relapse. However, microbial load was underexplored as a potential biomarker in inflammatory bowel disease (IBD). Here, we sought to study the use of fungal and bacterial loads as biomarkers to detect both CD and UC and CD and UC relapse. We analyzed the fecal fungal and bacterial loads of 294 stool samples obtained from 206 participants using real-time PCR amplification of the ITS2 region and the 16S rRNA gene, respectively. We combined the microbial data with demographic and standard laboratory data to diagnose ileal or ileocolonic CD and UC and predict disease relapse using the random forest algorithm. Fungal and bacterial loads were significantly different between healthy relatives of IBD patients and nonrelated healthy controls, between CD and UC patients in endoscopic remission, and between UC patients in relapse and non-UC individuals. Microbial load data combined with demographic and standard laboratory data improved the performance of the random forest models by 18%, reaching an average area under the receiver operating characteristic curve (AUC) of 0.842 (95% confidence interval [CI], 0.65 to 0.98), for IBD diagnosis and enhanced CD and UC discrimination and CD and UC relapse prediction. Our findings show that fecal fungal and bacterial loads could provide physicians with a noninvasive tool to discriminate disease subtypes or to predict disease flare in the clinical setting.IMPORTANCE Next-generation sequence data analysis has allowed a better understanding of the pathophysiology of IBD, relating microbiome composition and functions to the disease. Microbiome composition profiling may provide efficient diagnosis and prognosis tools in IBD. However, the bacterial and fungal loads of the fecal microbiota are underexplored as potential biomarkers of IBD. Ulcerative colitis (UC) patients have higher fecal fungal and bacterial loads than patients with ileal or ileocolonic CD. CD patients who relapsed harbor more-unstable fungal and bacterial loads than those of relapsed UC patients. Fecal fungal and bacterial load data improved prediction performance by 18% for IBD diagnosis based solely on clinical data and enhanced CD and UC discrimination and prediction of CD and UC relapse. Combined with existing laboratory biomarkers such as fecal calprotectin and C-reactive protein (CRP), microbial loads may improve the diagnostic accuracy of IBD and of ileal CD and UC disease activity and prediction of UC and ileal CD clinical relapse.

2.
Gut ; 61(4): 528-34, 2012 Apr.
Article in English | MEDLINE | ID: mdl-21708824

ABSTRACT

BACKGROUND: Haptoglobin (Hp) is a haemoglobin-binding protein with immunomodulatory properties. Its gene (16q22) harbours a common polymorphism with two different alleles: Hp1 and Hp2. Genotype Hp22 has been shown to be over-represented in different immune diseases. Results in Crohn's disease (CD) are contradictory. AIMS: To determine whether Hp plays a role in inflammatory bowel disease, both genetically and functionally. METHODS: 1061 patients with CD, 755 with ulcerative colitis (UC) and 152 with primary sclerosing cholangitis, as well as 452 healthy controls, were genotyped using touch-down PCR. To confirm association results, 464 CD trios and 151 UC trios were genotyped. Serum Hp concentrations were determined in 62 individuals of different genotype. Colitis was induced in mice with dextran sulphate sodium (DSS) and oxazolone (Oxa). Cytokine production was evaluated by mRNA quantification in colonic tissue and ELISA on supernatants of mesenteric lymph node cells. RESULTS: Prevalence of Hp2 was higher in CD and UC than in controls. In the confirmatory cohorts, Hp2 was over-transmitted to the affected offspring. Serum Hp concentrations were higher in individuals with genotypes Hp11 and Hp21 than in those with Hp22 (1.38 vs 0.89 g/l). DSS- and Oxa-induced colitis were more severe in Hp-deficient mice than in control mice and accompanied by higher concentrations (although not statistically significantly different) of tissue mRNA for cytokines. Interleukin-17 production was significantly higher in the presence of Hp-deficient serum compared with wild-type serum. CONCLUSIONS: The Hp gene may play a role in susceptibility to inflammatory bowel disease. Its implication in other immune diseases underscores the common pathways between these diseases. Experimental models of colitis showed that Hp has a protective role in inflammatory colitis, most likely by inhibiting the production of Th1 and Th17 cytokines.


Subject(s)
Haptoglobins/genetics , Inflammatory Bowel Diseases/genetics , Polymorphism, Genetic , Adult , Animals , Cholangitis, Sclerosing/genetics , Cholangitis, Sclerosing/metabolism , Colitis/chemically induced , Colitis/genetics , Colitis/metabolism , Colitis, Ulcerative/genetics , Colitis, Ulcerative/metabolism , Colon/metabolism , Crohn Disease/genetics , Crohn Disease/metabolism , Cytokines/biosynthesis , Disease Models, Animal , Female , Genetic Predisposition to Disease , Genotype , Haptoglobins/deficiency , Haptoglobins/metabolism , Humans , Inflammation Mediators/metabolism , Inflammatory Bowel Diseases/metabolism , Male , Mice , Mice, Knockout , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...