Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Toxins (Basel) ; 16(4)2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38668619

ABSTRACT

Cholera toxoid is an established tool for use in cellular tracing in neuroscience and cell biology. We use a sortase labeling approach to generate site-specific N-terminally modified variants of both the A2-B5 heterohexamer and B5 pentamer forms of the toxoid. Both forms of the toxoid are endocytosed by GM1-positive mammalian cells, and while the heterohexameric toxoid was principally localized in the ER, the B5 pentamer showed an unexpectedly specific localization in the medial/trans-Golgi. This study suggests a future role for specifically labeled cholera toxoids in live-cell imaging beyond their current applications in neuronal tracing and labeling of lipid rafts in fixed cells.


Subject(s)
Cholera Toxin , Cysteine Endopeptidases , Golgi Apparatus , Humans , Cholera Toxin/metabolism , Cysteine Endopeptidases/metabolism , Golgi Apparatus/metabolism , Animals , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Aminoacyltransferases/metabolism , Aminoacyltransferases/genetics , Endocytosis
2.
Angew Chem Int Ed Engl ; 63(8): e202310862, 2024 Feb 19.
Article in English | MEDLINE | ID: mdl-38072831

ABSTRACT

Quantitative and selective labelling of proteins is widely used in both academic and industrial laboratories, and catalytic labelling of proteins using transpeptidases, such as sortases, has proved to be a popular strategy for such selective modification. A major challenge for this class of enzymes is that the majority of procedures require an excess of the labelling reagent or, alternatively, activated substrates rather than simple commercially sourced peptides. We report the use of a coupled enzyme strategy which enables quantitative N- and C-terminal labelling of proteins using unactivated labelling peptides. The use of an aminopeptidase in conjunction with a transpeptidase allows sequence-specific degradation of the peptide by-product, shifting the equilibrium to favor product formation, which greatly enhances the reaction efficiency. Subsequent optimisation of the reaction allows N-terminal labelling of proteins using essentially equimolar ratios of peptide label to protein and C-terminal labelling with only a small excess. Minimizing the amount of substrate required for quantitative labelling has the potential to improve industrial processes and facilitate the use of transpeptidation as a method for protein labelling.


Subject(s)
Aminoacyltransferases , Peptidyl Transferases , Aminopeptidases , Bacterial Proteins/metabolism , Aminoacyltransferases/metabolism , Peptides/metabolism
3.
Front Chem ; 10: 958272, 2022.
Article in English | MEDLINE | ID: mdl-36186584

ABSTRACT

The chemoenzymatic synthesis of a series of dual N- and C-terminal-functionalized cholera toxin B subunit (CTB) glycoconjugates is described. Mucin 1 peptides bearing different levels of Tn antigen glycosylation [MUC1(Tn)] were prepared via solid-phase peptide synthesis. Using sortase-mediated ligation, the MUC1(Tn) epitopes were conjugated to the C-terminus of CTB in a well-defined manner allowing for high-density display of the MUC1(Tn) epitopes. This work explores the challenges of using sortase-mediated ligation in combination with glycopeptides and the practical considerations to obtain high levels of conjugation. Furthermore, we describe methods to combine two orthogonal labeling methodologies, oxime- and sortase-mediated ligation, to expand the biochemical toolkit and produce dual N- and C-terminal-labeled conjugates.

4.
Nat Plants ; 6(6): 602-603, 2020 06.
Article in English | MEDLINE | ID: mdl-32451446

Subject(s)
Germination , Seeds
5.
New Phytol ; 225(2): 621-636, 2020 01.
Article in English | MEDLINE | ID: mdl-31442309

ABSTRACT

Strigolactones are an important class of plant signalling molecule with both external rhizospheric and internal hormonal functions in flowering plants. The past decade has seen staggering progress in strigolactone biology, permitting highly detailed understanding of their signalling, synthesis and biological roles - or so it seems. However, phylogenetic analyses show that strigolactone signalling mediated by the D14-SCFMAX2 -SMXL7 complex is only one of a number of closely related signalling pathways, and is much less ubiquitous in land plants than might be expected. The existence of closely related pathways, such as the KAI2-SMAX1 module, challenges many of our assumptions about strigolactones, and in particular emphasises how little we understand about the specificity of strigolactone signalling with respect to related signalling pathways. In this review, we examine recent advances in strigolactone signalling, taking a holistic evolutionary view to identify the ambiguities and uncertainties in our understanding. We highlight that while we now have highly detailed molecular models for the core mechanism of D14-SMXL7 signalling, we still do not understand the ligand specificity of D14, the specificity of its interaction with SMXL7, nor the specificity of SMXL7 function. Our analysis therefore identifies key areas requiring further study.


Subject(s)
Lactones/metabolism , Signal Transduction , Lactones/chemistry , Phylogeny , Plant Development , Plant Proteins/chemistry , Plant Proteins/metabolism , Receptors, Cell Surface/metabolism
6.
Biochim Biophys Acta Proteins Proteom ; 1866(2): 254-263, 2018 Feb.
Article in English | MEDLINE | ID: mdl-29042184

ABSTRACT

Aminoimidazolecarboxamide ribonucleotide formyl transferase (AICARFT): Inosine monophosphate cyclohydrolase (IMPCH, collectively called ATIC) is a bifunctional enzyme that catalyses the penultimate and final steps in the purine de novo biosynthesis pathway. The bifunctional protein is dimeric and each monomer contains two different active sites both of which are capable of binding nucleotide substrates, this means to a potential total of four distinct binding events might be observed. Within this work we used a combination of site-directed and truncation mutants of ATIC to independently investigate the binding at these two sites using calorimetry. A single S10W mutation is sufficient to block the IMPCH active site allowing investigation of the effects of mutation on ligand binding in the AICARFT active site. The majority of nucleotide ligands bind selectively at one of the two active sites with the exception of xanthosine monophosphate, XMP, which, in addition to binding in both AICARFT and IMPCH active sites, shows evidence for cooperative binding with communication between symmetrically-related active sites in the two IMPCH domains. The AICARFT site is capable of independently binding both nucleotide and folate substrates with high affinity however no evidence for positive cooperativity in binding could be detected using the model ligands employed in this study.


Subject(s)
Hydroxymethyl and Formyl Transferases/chemistry , Models, Molecular , Multienzyme Complexes/chemistry , Nucleotide Deaminases/chemistry , Nucleotides/chemistry , Catalytic Domain , Humans , Hydroxymethyl and Formyl Transferases/genetics , Hydroxymethyl and Formyl Transferases/metabolism , Multienzyme Complexes/genetics , Multienzyme Complexes/metabolism , Nucleotide Deaminases/genetics , Nucleotide Deaminases/metabolism , Nucleotides/genetics , Nucleotides/metabolism , Protein Binding , Substrate Specificity/physiology
7.
Mol Biosyst ; 12(6): 1760-3, 2016 05 24.
Article in English | MEDLINE | ID: mdl-27075883

ABSTRACT

Lipid nanodiscs have broad applications in membrane protein assays, biotechnology and materials science. Chemical modification of the nanodiscs to expand their functional attributes is generally desirable for all of these uses. We present a method for site-selective labelling of the N-terminus of the nanodisc's membrane scaffold protein (MSP) using the Sortase A protein. Labelling of the MSP was achieved when assembled within the lipid nanodisc architecture, demonstrating that this method can be used as a retrofit approach to modification of preformed nanodiscs before or during application. We label the MSP with a fluorescent fluorescein moiety and use them to image nanodisc uptake into HeLa cells. The Sortase A labelling method could be employed as a general approach to labelling nanodiscs with application-specific functionalities.


Subject(s)
Aminoacyltransferases/chemistry , Bacterial Proteins/chemistry , Cell Tracking , Cysteine Endopeptidases/chemistry , Lipids/chemistry , Nanostructures/chemistry , Staining and Labeling , Cell Tracking/methods , Dynamic Light Scattering , HeLa Cells , Humans , Membrane Proteins/chemistry , Membrane Proteins/metabolism , Microscopy, Fluorescence , Particle Size
SELECTION OF CITATIONS
SEARCH DETAIL
...