Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
Add more filters










Publication year range
1.
Nat Cell Biol ; 26(6): 932-945, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38806647

ABSTRACT

As aberrant accumulation of RNA-DNA hybrids (R-loops) causes DNA damage and genome instability, cells express regulators of R-loop structures. Here we report that RNA-dependent RNA polymerase (RdRP) activity of human telomerase reverse transcriptase (hTERT) regulates R-loop formation. We found that the phosphorylated form of hTERT (p-hTERT) exhibits RdRP activity in nuclear speckles both in telomerase-positive cells and telomerase-negative cells with alternative lengthening of telomeres (ALT) activity. The p-hTERT did not associate with telomerase RNA component in nuclear speckles but, instead, with TERRA RNAs to resolve R-loops. Targeting of the TERT gene in ALT cells ablated RdRP activity and impaired tumour growth. Using a genome-scale CRISPR loss-of-function screen, we identified Fanconi anaemia/BRCA genes as synthetic lethal partners of hTERT RdRP. Inactivation of RdRP and Fanconi anaemia/BRCA genes caused accumulation of R-loop structures and DNA damage. These findings indicate that RdRP activity of p-hTERT guards against genome instability by removing R-loop structures.


Subject(s)
DNA Damage , Genomic Instability , R-Loop Structures , Telomerase , Telomere Homeostasis , Telomerase/genetics , Telomerase/metabolism , Humans , Phosphorylation , Genomic Instability/genetics , R-Loop Structures/genetics , RNA/metabolism , RNA/genetics , Animals , HEK293 Cells , Telomere/metabolism , Telomere/genetics , Cell Line, Tumor
2.
Virol J ; 19(1): 213, 2022 Dec 10.
Article in English | MEDLINE | ID: mdl-36496472

ABSTRACT

A novel coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has caused a global pandemic of coronavirus disease 19. Coronaviruses, including SARS-CoV-2, use RNA-dependent RNA polymerase (RdRP) for viral replication and transcription. Since RdRP is a promising therapeutic target for infection of SARS-CoV-2, it would be beneficial to develop new experimental tools for analysis of the RdRP reaction of SARS-CoV-2. Here, we succeeded to develop novel mouse monoclonal antibodies (mAbs) that recognize SARS-CoV-2 nsp12, catalytic subunit of the RdRP. These anti-nsp12 mAbs, RdMab-2, -13, and -20, specifically recognize SARS-CoV-2 nsp12 by western blotting analysis, while they exhibit less or no cross-reactivity to SARS-CoV nsp12. In addition, SARS-CoV-2 nsp12 was successfully immunoprecipitated using RdMab-2 from lysates of cells overexpressing SARS-CoV-2 nsp12. RdMab-2 was able to detect SARS-CoV-2 nsp12 transiently expressed in established culture cells such as HEK293T cells by indirect immunofluorescence technique. These novel mAbs against SARS-CoV-2 nsp12 are useful to elucidate the RdRP reaction of SARS-CoV-2 and biological cell response against it.


Subject(s)
COVID-19 , SARS-CoV-2 , Mice , Animals , Humans , SARS-CoV-2/genetics , Antibodies, Monoclonal , HEK293 Cells , RNA-Dependent RNA Polymerase/genetics
3.
J Pathol ; 257(2): 172-185, 2022 06.
Article in English | MEDLINE | ID: mdl-35094384

ABSTRACT

Recent evidence indicates that RNA-dependent RNA polymerase (RdRP) activity of human telomerase reverse transcriptase (hTERT) regulates expression of target genes and is directly involved in tumor formation in a telomere-independent manner. Non-canonical function of hTERT has been considered as a therapeutic target for cancer therapy. We have previously shown that hTERT phosphorylation at threonine 249 (p-hTERT), which promotes RdRP activity, is an indicator of an aggressive phenotype and poor prognosis in liver and pancreatic cancers, using two cohorts with small sample sizes with polyclonal p-hTERT antibody. To clarify the clinical relevance of p-hTERT, we developed a specific monoclonal antibody and determined the diagnostic and prognostic value of p-hTERT in cancer specimens using a large cohort. A monoclonal antibody for phosphorylated hTERT (p-hTERT) at threonine 249 was developed and validated. The antibody was used for the immunohistochemical staining of formalin-fixed, paraffin-embedded specimens from 1523 cases of lung, colon, stomach, pancreatic, liver, breast, and kidney cancers. We detected elevated p-hTERT expression levels in cases with a high mitotic activity, high pathological grade, and high nuclear pleomorphism. Elevated p-hTERT expression was an independent prognostic factor for lung, pancreatic, and liver cancers. Furthermore, p-hTERT expression was associated with immature and aggressive features, such as adenosquamous carcinoma (lung and pancreas), invasive type of cancer (lung), high serum alpha-fetoprotein level (liver), and triple-negative status (breast). In conclusion, RdRP activity indicated by p-hTERT expression predicts aggressive cancer phenotypes in various types of cancer. Thus, p-hTERT is a novel biomarker for the diagnosis of aggressive cancers with a poor prognosis. © 2022 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.


Subject(s)
Neoplasms , Telomerase , Antibodies, Monoclonal , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Humans , Neoplasms/genetics , Neoplasms/pathology , Phosphorylation , Prognosis , RNA-Dependent RNA Polymerase , Telomerase/genetics , Threonine/metabolism
4.
Cancer Sci ; 111(11): 3976-3984, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32805774

ABSTRACT

A recent outbreak of coronavirus disease (COVID-19) caused by the novel severe acute respiratory syndrome coronavirus 2 has driven a global pandemic with catastrophic consequences. The rapid development of promising therapeutic strategies against COVID-19 is keenly anticipated. Family Coronaviridae comprises positive, single-stranded RNA viruses that use RNA-dependent RNA polymerase (RdRP) for viral replication and transcription. As the RdRP of viruses in this family and others plays a pivotal role in infection, it is a promising therapeutic target for developing antiviral agents against them. A critical genetic driver for many cancers is the catalytic subunit of telomerase: human telomerase reverse transcriptase (hTERT), identified initially as an RNA-dependent DNA polymerase. However, even though hTERT is a DNA polymerase, it has phylogenetic and structural similarities to viral RdRPs. Researchers worldwide, including the authors of this review, are engaged in developing therapeutic strategies targeting hTERT. We have published a series of papers reporting that hTERT has RdRP activity and that this RdRP activity in hTERT is essential for tumor formation. Here, we review the enzymatic function of RdRP in virus proliferation and tumor development, reminding us of how the study of the novel coronavirus has brought us to the unexpected intersection of cancer research and RNA virus research.


Subject(s)
COVID-19/virology , RNA-Dependent RNA Polymerase/metabolism , SARS-CoV-2/physiology , Telomerase/metabolism , Viral Proteins/metabolism , Animals , COVID-19/enzymology , Carcinogenesis/metabolism , Humans , Virus Replication/physiology
5.
RNA ; 26(11): 1716-1725, 2020 11.
Article in English | MEDLINE | ID: mdl-32759388

ABSTRACT

PHAX (phosphorylated adaptor for RNA export) promotes nuclear export of short transcripts of RNA polymerase II such as spliceosomal U snRNA precursors, as well as intranuclear transport of small nucleolar RNAs (snoRNAs). However, it remains unknown whether PHAX has other critical functions. Here we show that PHAX is required for efficient DNA damage response (DDR) via regulation of phosphorylated histone variant H2AX (γH2AX), a key factor for DDR. Knockdown of PHAX led to a significant reduction of H2AX mRNA levels, through inhibition of both transcription of the H2AX gene and nuclear export of H2AX mRNA, one of the shortest mRNAs in the cell. As a result, PHAX-knockdown cells become more sensitive to DNA damage due to a shortage of γH2AX. These results reveal a novel function of PHAX, which secures efficient DDR and hence genome stability.


Subject(s)
Histones/genetics , Histones/metabolism , Nucleocytoplasmic Transport Proteins/genetics , Nucleocytoplasmic Transport Proteins/metabolism , Phosphoproteins/genetics , Phosphoproteins/metabolism , Cell Line , DNA Damage , DNA Repair , Gene Expression , Gene Knockdown Techniques , Humans , Phosphorylation , Ultraviolet Rays/adverse effects
6.
Nat Commun ; 11(1): 1557, 2020 03 25.
Article in English | MEDLINE | ID: mdl-32214089

ABSTRACT

The telomerase reverse transcriptase is upregulated in the majority of human cancers and contributes directly to cell transformation. Here we report that hTERT is phosphorylated at threonine 249 during mitosis by the serine/threonine kinase CDK1. Clinicopathological analyses reveal that phosphorylation of hTERT at threonine 249 occurs more frequently in aggressive cancers. Using CRISPR/Cas9 genome editing, we introduce substitution mutations at threonine 249 in the endogenous hTERT locus and find that phosphorylation of threonine 249 is necessary for hTERT-mediated RNA dependent RNA polymerase (RdRP) activity but dispensable for reverse transcriptase and terminal transferase activities. Cap Analysis of Gene Expression (CAGE) demonstrates that hTERT phosphorylation at 249 regulates the expression of specific genes that are necessary for cancer cell proliferation and tumor formation. These observations indicate that phosphorylation at threonine 249 regulates hTERT RdRP and contributes to cancer progression in a telomere independent manner.


Subject(s)
CDC2 Protein Kinase/metabolism , Neoplasms/metabolism , Neoplasms/pathology , Telomerase/metabolism , Animals , CDC2 Protein Kinase/antagonists & inhibitors , CDC2 Protein Kinase/genetics , Cell Line, Tumor , Cell Proliferation , Cell Transformation, Neoplastic , Gene Expression Regulation, Neoplastic , HeLa Cells , Humans , Mice , Mitosis , Mutation , Neoplasms/genetics , Phosphorylation , RNA-Dependent RNA Polymerase/metabolism , Telomerase/genetics , Threonine
7.
Mol Cell Biol ; 40(4)2020 01 30.
Article in English | MEDLINE | ID: mdl-31818879

ABSTRACT

Nuclear paraspeckle assembly transcript 1 (NEAT1) is a long noncoding RNA that functions as an essential framework of subnuclear paraspeckle bodies. Of the two isoforms (NEAT1_1 and NEAT1_2) produced by alternative 3'-end RNA processing, the longer isoform, NEAT1_2, plays a crucial role in paraspeckle formation. Here, we demonstrate that the 3'-end processing and stability of NEAT1 RNAs are regulated by arsenic resistance protein 2 (ARS2), a factor interacting with the cap-binding complex (CBC) that binds to the m7G cap structure of RNA polymerase II transcripts. The knockdown of ARS2 inhibited the association between NEAT1 and mammalian cleavage factor I (CFIm), which produces the shorter isoform, NEAT1_1. Furthermore, the knockdown of ARS2 led to the preferential stabilization of NEAT1_2. As a result, NEAT1_2 RNA levels were markedly elevated in ARS2 knockdown cells, leading to an increase in the number of paraspeckles. These results reveal a suppressive role for ARS2 in NEAT1_2 expression and the subsequent formation of paraspeckles.


Subject(s)
Cell Nucleus/metabolism , Nuclear Proteins/genetics , RNA Processing, Post-Transcriptional/genetics , RNA, Long Noncoding/genetics , Cell Line, Tumor , Humans , RNA Interference , RNA, Long Noncoding/metabolism , RNA, Small Interfering/genetics
8.
Sci Rep ; 8(1): 12315, 2018 08 17.
Article in English | MEDLINE | ID: mdl-30120324

ABSTRACT

Pre-existing anti-adenovirus (Ad) neutralizing antibodies (AdNAbs) are a major barrier in clinical gene therapy using Ad vectors and oncolytic Ads; however, it has not been fully elucidated which Ad capsid protein-specific antibodies are involved in AdNAb-mediated inhibition of Ad infection in vivo. In this study, mice possessing antibodies specific for each Ad capsid protein were prepared by intramuscular electroporation of each Ad capsid protein-expressing plasmid. Ad vector-mediated hepatic transduction was efficiently inhibited by more than 100-fold in mice immunized with a fiber protein-expressing plasmid or a penton base-expressing plasmid. An Ad vector pre-coated with FX before administration mediated more than 100-fold lower transduction efficiencies in the liver of warfarinized mice immunized with a fiber protein-expressing plasmid or a penton base-expressing plasmid, compared with those in the liver of warfarinized non-immunized mice. These data suggest that anti-fiber protein and anti-penton base antibodies bind to an Ad vector even though FX has already bound to the hexon, and inhibit Ad vector-mediated transduction. This study provides important clues for the development of a novel Ad vector that can circumvent inhibition with AdNAbs.


Subject(s)
Adenoviridae/immunology , Antibodies, Viral/immunology , Capsid Proteins/immunology , Liver/metabolism , Adenoviridae/genetics , Animals , Female , Gene Dosage/genetics , Genetic Vectors/genetics , Mice , Mice, Inbred C57BL , Plasmids/genetics , Transduction, Genetic/methods
9.
Mol Ther Oncolytics ; 7: 76-85, 2017 Dec 15.
Article in English | MEDLINE | ID: mdl-29202008

ABSTRACT

Telomerase-specific replication-competent adenoviruses (Ads), i.e., TRADs, which possess an E1 gene expression cassette driven by the human telomerase reverse transcriptase promoter, are promising agents for cancer treatment. However, even though oncolytic Ads, including TRAD, are intratumorally administered, they are disseminated from the tumor to systemic circulation, causing concern about oncolytic Ad-mediated hepatotoxicity (due mainly to leaky expression of Ad genes in liver). We reported that inhibition of nuclear factor-κB (NF-κB) leads to the suppression of replication-incompetent Ad vector-mediated hepatotoxicity via reduction of the leaky expression of Ad genes in liver. Here, to develop a TRAD with an improved safety profile, we designed a TRAD that carries a liver-specific promoter-driven dominant-negative IκBα (DNIκBα) expression cassette (TRAD-DNIκBα). Compared with a conventional TRAD, TRAD-DNIκBα showed hepatocyte-specific inhibition of NF-κB signaling and significantly reduced Ad gene expression and replication in the normal human hepatocyte cell line. TRAD-induced hepatotoxicity was largely suppressed in mice following intravenous administration of TRAD-DNIκBα. However, the replication profiles and oncolytic activities of TRAD-DNIκBα were comparable with those of the conventional TRAD in human non-hepatic tumor cells. These results indicate that oncolytic Ads containing the liver-specific DNIκBα expression cassette have improved safety profiles without inhibiting oncolytic activities.

10.
Biol Pharm Bull ; 40(3): 272-277, 2017.
Article in English | MEDLINE | ID: mdl-28250269

ABSTRACT

Clustered regularly interspaced short palindromic repeat (CRISPR)/Cas9-mediated genome engineering technology is a powerful tool for generation of cells and animals with engineered mutations in their genomes. In order to introduce the CRISPR/Cas9 system into target cells, nonviral and viral vectors are often used; however, such vectors trigger innate immune responses associated with production of type I interferons (IFNs). We have recently demonstrated that type I IFNs inhibit short-hairpin RNA-mediated gene silencing, which led us to hypothesize that type I IFNs may also inhibit CRISPR/Cas9-mediated genome mutagenesis. Here we investigated this hypothesis. A single-strand annealing assay using a reporter plasmid demonstrated that CRISPR/Cas9-mediated cleavage efficiencies of the target double-stranded DNA were significantly reduced by IFNα. A mismatch recognition nuclease-dependent genotyping assay also demonstrated that IFNα reduced insertion or deletion (indel) mutation levels by approximately half. Treatment with IFNα did not alter Cas9 protein expression levels, whereas the copy numbers of guide RNA (gRNA) were significantly reduced by IFNα stimulation. These results indicate that type I IFNs significantly reduce gRNA expression levels following introduction of the CRISPR/Cas9 system in the cells, leading to a reduction in the efficiencies of CRISPR/Cas9-mediated genome mutagenesis. Our findings provide important clues for the achievement of efficient genome engineering using the CRISPR/Cas9 system.


Subject(s)
Clustered Regularly Interspaced Short Palindromic Repeats , Genetic Engineering/methods , Genetic Vectors/immunology , Interferon Type I/biosynthesis , Mutagenesis , RNA, Guide, Kinetoplastida/metabolism , A549 Cells , DNA , Efficiency , Endonucleases/metabolism , Genome , Genotype , Humans , Interferon Type I/metabolism , Mutation , Plasmids
11.
J Virol ; 91(12)2017 06 15.
Article in English | MEDLINE | ID: mdl-28356525

ABSTRACT

Recent studies have reported that host microRNAs (miRNAs) regulate infections by several types of viruses via various mechanisms and that inhibition of the miRNA processing factors enhances or prevents viral infection. However, it has not been clarified whether these effects of miRNAs extend to adenovirus (Ad) infection. Here we show that miR-27a and -b efficiently inhibit infection with an Ad via the downregulation of SNAP25 and TXN2, which are members of the SNARE proteins and the thioredoxin family, respectively. Approximately 80% reductions in Ad genomic copy number were found in cells transfected with miR-27a/b mimics, whereas there were approximately 2.5- to 5-fold larger copy numbers of the Ad genome following transfection with miR-27a/b inhibitors. Microarray gene expression analysis and in silico analysis demonstrated that SNAP25 and TXN2 are target genes of miR-27a/b. A reporter assay using plasmids containing the 3' untranslated regions of the SNAP25 and TXN2 genes showed that miR-27a/b directly suppressed SNAP25 and TXN2 expression through posttranscriptional gene silencing. Knockdown of SNAP25 led to a significant inhibition of Ad entry into cells. Knockdown of TXN2 induced cell cycle arrest at G1 phase, leading to a reduction in Ad replication. In addition, overexpression of Ad-encoded small noncoding RNAs (VA-RNAs) restored the miR-27a/b-mediated reduction in infection level with a VA-RNA-lacking Ad mutant due to the VA-RNA-mediated inhibition of miR-27a/b expression. These results indicate that miR-27a and -b suppress SNAP25 and TXN2 expression via posttranscriptional gene silencing, leading to efficient suppression of Ad infection.IMPORTANCE Adenovirus (Ad) is widely used as a platform for replication-incompetent Ad vectors (Adv) and replication-competent oncolytic Ad (OAd) in gene therapy and virotherapy. Regulation of Ad infection is highly important for efficient gene therapies using both Adv and OAd. In this study, we demonstrate that miR-27a and -b, which are widely expressed in host cells, suppress SNAP25 and TXN2 expression through posttranscriptional gene silencing. Suppression of SNAP25 and TXN2 expression leads to inhibition of Ad entry into cells and to cell cycle arrest, respectively, leading to efficient suppression of Ad infection. Our findings provide important clues to the improvement of gene therapies using both Adv and OAd.


Subject(s)
MicroRNAs/genetics , Mitochondrial Proteins/genetics , RNA Interference , Synaptosomal-Associated Protein 25/genetics , Thioredoxins/genetics , Cell Proliferation , Computer Simulation , Down-Regulation , Gene Dosage , Gene Knockdown Techniques , Genetic Vectors/genetics , HeLa Cells , Humans , Microarray Analysis , RNA, Small Untranslated , Transfection
12.
Mol Ther Nucleic Acids ; 6: 173-182, 2017 Mar 17.
Article in English | MEDLINE | ID: mdl-28325284

ABSTRACT

RNAi by short hairpin RNA (shRNA) is a powerful tool not only for studying gene functions in various organisms, including mammals, but also for the treatment of severe disorders. However, shRNA-expressing vectors can induce type I interferon (IFN) expression by activation of innate immune responses, leading to off-target effects and unexpected side effects. Several strategies have been developed to prevent type I IFN induction. On the other hand, it has remained unclear whether type I IFNs have effects on shRNA-mediated RNAi. Here, we show that the type I IFNs significantly inhibit shRNA-mediated RNAi. Treatment with recombinant human IFN-α significantly inhibited shRNA-mediated knockdown of target genes, while it did not inhibit small interfering RNA (siRNA)-mediated knockdown. Following treatment with IFN-α, increased and decreased copy numbers of shRNA and its processed form, respectively, were found in the cells transfected with shRNA-expressing plasmids. Dicer protein levels were not altered by IFN-α. These results indicate that type I IFNs inhibit shRNA-mediated RNAi via inhibition of dicer-mediated processing of shRNA to siRNA. Our findings should provide important clues for efficient RNAi-mediated knockdown of target genes in both basic researches and clinical gene therapy.

13.
Mol Cancer Ther ; 16(1): 251-259, 2017 01.
Article in English | MEDLINE | ID: mdl-27760834

ABSTRACT

Oncolytic viruses have been receiving much attention as potential agents for cancer treatment. Among the various types of oncolytic viruses, the telomerase-specific replication-competent adenovirus (TRAD), which carries the tumor-specific promoter-driven E1 gene expression cassette, exhibits efficient antitumor effects. The development of a novel TRAD that shows higher replication efficiency and antitumor activity would be highly beneficial for safer and more efficient cancer therapy. We recently demonstrated that the endoribonuclease Dicer significantly inhibits the replication of wild-type adenovirus (Ad) via the processing of viral-associated (VA)-RNAs, which are Ad-encoded small noncoding RNAs, and that the knockdown of Dicer leads to enhanced VA-RNA expression and Ad replication after infection with wild-type Ad. Based on these findings, we herein developed a novel TRAD expressing short-hairpin RNA against Dicer (shDicer; TRAD-shDicer). After infection, TRAD-shDicer efficiently induced the knockdown of Dicer. TRAD-shDicer showed significantly higher replication efficiency and tumor cell lysis activity compared with the conventional TRAD in tumor cells. The Dicer expression levels and viabilities of normal cells were not altered by infection with TRAD-shDicer. These results indicate that TRAD-shDicer is a potent antitumor reagent by virtue of its enhanced oncolytic activity. Mol Cancer Ther; 16(1); 251-9. ©2016 AACR.


Subject(s)
Adenoviridae/genetics , Gene Expression , Genetic Vectors/genetics , Oncolytic Viruses/genetics , RNA, Small Interfering/genetics , Ribonuclease III/genetics , Telomerase/metabolism , Virus Replication , Animals , Cell Line, Tumor , Disease Models, Animal , Female , Gene Knockdown Techniques , Gene Order , Genetic Therapy/methods , Humans , Mice , Oncolytic Virotherapy/methods , Organ Specificity/genetics , Telomerase/genetics , Transduction, Genetic , Tumor Burden/genetics , Xenograft Model Antitumor Assays
14.
Yakugaku Zasshi ; 136(11): 1509-1515, 2016.
Article in Japanese | MEDLINE | ID: mdl-27803482

ABSTRACT

The adenovirus (Ad) genome encodes two small noncoding RNAs, VA-RNA I and II, which support Ad replication by antagonizing the antiviral action associated with the Ad-induced activation of double-stranded RNA-dependent protein kinase (PKR). VA-RNAs are also processed in a manner similar to microRNAs (miRNAs), resulting in the production of VA-RNA-derived miRNAs (mivaRNAs). mivaRNAs are incorporated into the RNA-induced silencing complex (RISC) and exhibit posttranscriptional silencing in a manner similar to miRNAs. However, it remained to be clarified whether Dicer-mediated processing of VA-RNAs and the subsequent production of mivaRNAs were crucial for Ad replication. Recently, we have found that Dicer efficiently suppresses Ad replication via cleavage of VA-RNAs to mivaRNAs. Based on these findings, we have developed an oncolytic Ad that shows tumor cell-specific replication and carries an expression cassette of short-hairpin RNA (shRNA) against Dicer (shDicer). The oncolytic Ad expressing shDicer exhibited more efficient replication and oncolytic activity both in vitro and in vivo. In addition, we demonstrated that shRNA-mediated RNA interference is competitively inhibited by VA-RNAs. A replication-incompetent Ad vector lacking VA-RNA expression (AdΔVR vector) exhibited superior knockdown efficiencies compared with a conventional Ad vector, indicating that an shRNA-expressing AdΔVR vector is a powerful framework for shRNA-mediated knockdown. We believe that functional analyses of Ad-encoded genes, including VA-RNAs, could lead to the development of novel recombinant Ads.


Subject(s)
Adenoviridae/genetics , Adenoviridae/physiology , Genetic Engineering , Genetic Vectors , Genome, Viral/genetics , RNA, Small Untranslated , RNA, Viral , Virus Replication/genetics , Genetic Therapy , MicroRNAs/metabolism , Oncolytic Viruses , Protein Kinases/metabolism , RNA Interference , RNA, Double-Stranded , RNA, Small Interfering , Ribonuclease III
15.
Sci Rep ; 6: 27598, 2016 06 07.
Article in English | MEDLINE | ID: mdl-27273616

ABSTRACT

In various organisms, including nematodes and plants, RNA interference (RNAi) is a defense system against virus infection; however, it is unclear whether RNAi functions as an antivirus system in mammalian cells. Rather, a number of DNA viruses, including herpesviruses, utilize post-transcriptional silencing systems for their survival. Here we show that Dicer efficiently suppresses the replication of adenovirus (Ad) via cleavage of Ad-encoding small RNAs (VA-RNAs), which efficiently promote Ad replication via the inhibition of eIF2α phosphorylation, to viral microRNAs (mivaRNAs). The Dicer knockdown significantly increases the copy numbers of VA-RNAs, leading to the efficient inhibition of eIF2α phosphorylation and the subsequent promotion of Ad replication. Conversely, overexpression of Dicer significantly inhibits Ad replication. Transfection with mivaRNA does not affect eIF2α phosphorylation or Ad replication. These results indicate that Dicer-mediated processing of VA-RNAs leads to loss of activity of VA-RNAs for enhancement of Ad replication and that Dicer functions as a defence system against Ad in mammalian cells.


Subject(s)
Adenoviruses, Human/genetics , DEAD-box RNA Helicases/genetics , Host-Pathogen Interactions , RNA, Untranslated/genetics , RNA, Viral/genetics , Ribonuclease III/genetics , Adenoviruses, Human/metabolism , Animals , Base Sequence , DEAD-box RNA Helicases/metabolism , Gene Expression Regulation , Genes, Reporter , HEK293 Cells , HeLa Cells , Hep G2 Cells , Humans , Luciferases/genetics , Luciferases/metabolism , MCF-7 Cells , Plasmids/chemistry , Plasmids/metabolism , RNA Interference , RNA, Untranslated/metabolism , RNA, Viral/metabolism , Ribonuclease III/metabolism , Signal Transduction
16.
Mol Ther Methods Clin Dev ; 3: 16001, 2016.
Article in English | MEDLINE | ID: mdl-26966699

ABSTRACT

Circulating tumor cells (CTCs) are promising biomarkers in several cancers, and thus methods and apparatuses for their detection and quantification in the blood have been actively pursued. A novel CTC detection system using a green fluorescence protein (GFP)-expressing conditionally replicating adenovirus (Ad) (rAd-GFP) was recently developed; however, there is concern about the production of false-positive cells (GFP-positive normal blood cells) when using rAd-GFP, particularly at high titers. In addition, CTCs lacking or expressing low levels of coxsackievirus-adenovirus receptor (CAR) cannot be detected by rAd-GFP, because rAd-GFP is constructed based on Ad serotype 5, which recognizes CAR. In order to suppress the production of false-positive cells, sequences perfectly complementary to blood cell-specific microRNA, miR-142-3p, were incorporated into the 3'-untranslated region of the E1B and GFP genes. In addition, the fiber protein was replaced with that of Ad serotype 35, which recognizes human CD46, creating rAdF35-142T-GFP. rAdF35-142T-GFP efficiently labeled not only CAR-positive tumor cells but also CAR-negative tumor cells with GFP. The numbers of false-positive cells were dramatically lower for rAdF35-142T-GFP than for rAd-GFP. CTCs in the blood of cancer patients were detected by rAdF35-142T-GFP with a large reduction in false-positive cells.

17.
Biomaterials ; 34(16): 4191-4201, 2013 May.
Article in English | MEDLINE | ID: mdl-23473963

ABSTRACT

A major drawback of adenovirus (Ad) vectors is their nonspecific transduction into various types of cells or tissue after in vivo application, which might lead to unexpected toxicity and tissue damage. To overcome this problem, we developed a fiber-mutant Ad vector displaying a monobody specific for epidermal growth factor receptor (EGFR) or vascular endothelial growth factor receptor 2 (VEGFR2) in the C-terminus of the knobless fiber protein derived from T4 phage fibritin. A monobody, which is a single domain antibody mimic based on the tenth human fibronectin type III domain scaffold with a structure similar to the variable domains of antibodies, would be suitable as a targeting molecule for display on the Ad capsid proteins because of its highly stable structure even under reducing conditions and low molecular weight (approximately 10 kDa). Surface plasmon resonance (SPR) analysis revealed that the monobody-displaying Ad vector specifically bound to the targeted molecules, leading to significant increases in cellular binding and transduction efficiencies in the targeted cells. Transduction with the monobody-displaying Ad vectors was significantly inhibited in the presence of the Fc-chimera protein of EGFR and VEGFR2. This monobody-displaying Ad vector would be a crucial resource for targeted gene therapy.


Subject(s)
Adenoviridae/genetics , Antibodies/metabolism , Fibronectins/chemistry , Genetic Therapy , Genetic Vectors/metabolism , Viral Proteins/metabolism , Animals , Blotting, Western , Cell Line, Tumor , ErbB Receptors/metabolism , Humans , Mice , Mutation/genetics , NIH 3T3 Cells , Protein Structure, Tertiary , Real-Time Polymerase Chain Reaction , Surface Plasmon Resonance , Transduction, Genetic , Vascular Endothelial Growth Factor Receptor-2/metabolism
18.
Mol Pharm ; 8(4): 1430-5, 2011 Aug 01.
Article in English | MEDLINE | ID: mdl-21682288

ABSTRACT

Theoretically, adenovirus (Ad) genes should not be expressed following transduction with a replication-incompetent Ad vector because the E1A gene, which is essential for the expression of other viral gene, is deleted in a replication-incompetent Ad vector. However, leaky expression of viral genes is known to occur following transduction with an E1-deleted Ad vector, leading to an induction of cellular immunity against Ad proteins. To date, no detailed analysis of the leaky expression profiles of Ad genes has been performed. In this study, we systematically examined the expression profiles of Ad genes in cells following transduction with a replication-incompetent Ad vector (Ad-L2) at multiplicities of infection (MOIs) of 10 and 100 using real-time RT-PCR. Significant expression was found for the E4 and pIX genes following transduction with Ad-L2 in cultured cells. The expression levels of the E4 and pIX genes were approximately 30- to 600-fold lower than those of the transgene (firefly luciferase), and 50- to 5000-fold lower than those of the E4 and pIX genes following transduction at the same MOI with the wild-type Ad. Unexpectedly, expression levels of the major capsid proteins were approximately the same as, or even slightly above, the background levels (Ad gene expression levels in mock-transduced cells). This study provides valuable information for the design of a safe and efficient replication-incompetent Ad vector.


Subject(s)
Adenoviridae/genetics , Genetic Vectors/genetics , Viral Proteins/genetics , Cell Line , Humans , Reverse Transcriptase Polymerase Chain Reaction
19.
J Control Release ; 154(3): 285-9, 2011 Sep 25.
Article in English | MEDLINE | ID: mdl-21703313

ABSTRACT

A major limitation of the use of adenovirus (Ad) vectors is the innate immune response, which causes inflammatory cytokine production and tissue damages. To overcome this limitation, it is necessary to develop safer Ad vectors that are less likely to induce innate immunity. The Ad genome encodes two non-coding small RNAs, virus-associated (VA)-RNA I and VA-RNA II, which are transcribed by RNA polymerase III and promote Ad replication. Recently, we reported that VA-RNAs are produced in the cells transduced with a conventional first-generation (E1-deleted) Ad vector (FG-Ad) and trigger innate immune responses through intracellular nucleic acid sensors. In the present study, we have developed a VA-RNA-deleted Ad (AdΔVR) vector, in which the transcriptional control elements of the VA-RNA-expression were deleted. Although conventional HEK293 cells did not support the propagation of the AdΔVR vectors, HEK293 transformants inducibly expressing VA-RNA I (VR293 cells) with appropriate induction of VA-RNA I expression allowed the propagation of the AdΔVR vector. The AdΔVR vector showed high transduction efficiency comparable to that of the conventional FG-Ad vector in the cultured cells. The AdΔVR vector may be a safer alternative to the FG-Ad vector.


Subject(s)
Adenoviridae/genetics , Genetic Vectors/genetics , RNA, Viral/genetics , Cell Line , Gene Deletion , Gene Expression Regulation, Viral , Humans
20.
Pharmaceutics ; 3(3): 338-53, 2011 Jul 11.
Article in English | MEDLINE | ID: mdl-24310584

ABSTRACT

The major limitation of the clinical use of replication-incompetent adenovirus (Ad) vectors is the interference by innate immune responses, including induction of inflammatory cytokines and interferons (IFN), following in vivo application of Ad vectors. Ad vector-induced production of inflammatory cytokines and IFNs also results in severe organ damage and efficient induction of acquired immune responses against Ad proteins and transgene products. Ad vector-induced innate immune responses are triggered by the recognition of Ad components by pattern recognition receptors (PRRs). In order to reduce the side effects by Ad vector-induced innate immune responses and to develop safer Ad vectors, it is crucial to clarify which PRRs and which Ad components are involved in Ad vector-induced innate immune responses. Our group previously demonstrated that myeloid differentiating factor 88 (MyD88) and toll-like receptor 9 (TLR9) play crucial roles in the Ad vector-induced inflammatory cytokine production in mouse bone marrow-derived dendritic cells. Furthermore, our group recently found that virus associated-RNAs (VA-RNAs), which are about 160 nucleotide-long non-coding small RNAs encoded in the Ad genome, are involved in IFN production through the IFN-ß promoter stimulator-1 (IPS-1)-mediated signaling pathway following Ad vector transduction. The aim of this review is to highlight the Ad vector-induced innate immune responses following transduction, especially VA-RNA-mediated innate immune responses. Our findings on the mechanism of Ad vector-induced innate immune responses should make an important contribution to the development of safer Ad vectors, such as an Ad vector lacking expression of VA-RNAs.

SELECTION OF CITATIONS
SEARCH DETAIL
...