Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 67
Filter
Add more filters










Publication year range
1.
Magn Reson Med ; 92(1): 430-439, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38411265

ABSTRACT

PURPOSE: Electron spin resonance (ESR) is used to measure oxygen partial pressure (pO2) in biological media with many clinical applications. Traditional clinical ESR involves large magnets that encompass the subject of measurement. However, certain applications might benefit from a scanner operating within local static magnetic fields. Our group recently developed such a compact scanner for transcutaneous (surface) pO2 measurements of skin tissue. Here we extend this capability to subsurface (subcutaneous) pO2 measurements and verify it using an artificial tissue emulating (ATE) phantom. METHODS: We introduce a new scanner, tailored for subcutaneous measurements up to 2 mm beneath the skin's surface. This scanner captures pulsed ESR signals from embedded approximate 1-mm oxygen-sensing solid paramagnetic implant, OxyChip. The scanner features a static magnetic field source, producing a uniform region outside its surface, and a compact microwave resonator, for exciting and receiving ESR signals. RESULTS: ESR readings derived from an OxyChip, positioned approximately 1.5 mm from the scanner's surface, embedded in ATE phantom, exhibited a linear relation of 1/T2 versus pO2 for pO2 levels at 0, 7.6, 30, and 160 mmHg, with relative reading accuracy of about 10%. CONCLUSION: The compact ESR scanner can report pO2 data in ATE phantom from an external position relative to the scanner. Implementing this scanner in preclinical and clinical applications for subcutaneous pO2 measurements is a feasible next phase for this development. This innovative design also has the potential to operate in conjunction with artificial skin graft for wound healing, combining therapeutic and pO2 diagnostic features.


Subject(s)
Oximetry , Oxygen , Phantoms, Imaging , Electron Spin Resonance Spectroscopy , Oximetry/methods , Humans , Equipment Design , Skin/diagnostic imaging
3.
Acta Biomater ; 171: 249-260, 2023 11.
Article in English | MEDLINE | ID: mdl-37708927

ABSTRACT

Microencapsulation is a promising strategy to prolong the survival and function of transplanted pancreatic islets for diabetes therapy, albeit its translation has been impeded by incoherent graft performance. The use of decellularized ECM has lately gained substantial research momentum due to its innate capacity to augment the function of cells originating from the same tissue type. In the present study, the advantages of both these approaches are leveraged in a porcine pancreatic ECM (pECM)-based microencapsulation platform, thus significantly enhancing murine pancreatic islet performance. pECM-encapsulated islets sustain high insulin secretion levels in vitro, surpassing those of islets encapsulated in conventional alginate microcapsules. Moreover, pECM-encapsulated islet cells proliferate and produce an enriched intra-islet ECM framework, displaying a distinctive structural rearrangement. The beneficial effect of pECM encapsulation is further reinforced by the temporary protection against cytokine-induced cytotoxicity. In-vivo, this platform significantly improves glucose tolerance and achieves glycemic correction in 100% of immunocompetent diabetic mice without any immunosuppression, compared to only 50% mice achieved glycemic correction by alginate encapsulation. Altogether, the results presented herein reveal that pECM-based microencapsulation offers a natural pancreatic niche that can restore the function of isolated pancreatic islets and deliver them safely, avoiding the need for immunosuppression. STATEMENT OF SIGNIFICANCE: Aiming to improve pancreatic islet transplantation outcomes in diabetic patients, we developed a microencapsulation platform based on pancreatic extracellular matrix (pECM). In these microcapsules the islets are entrapped within a pECM hydrogel that mimics the natural pancreatic microenvironment. We show that pECM encapsulation supports the islets' viability and function in culture, and provides temporal protection against cytokine-induced stress. In a diabetic mouse model, pECM encapsulation significantly improved glucose tolerance and achieved glycemic correction without any immunosuppression. These results reveal the potential of pECM encapsulation as a viable treatment for diabetes, providing a solid scientific basis for more advanced preclinical studies.


Subject(s)
Diabetes Mellitus, Experimental , Islets of Langerhans Transplantation , Islets of Langerhans , Humans , Mice , Animals , Swine , Diabetes Mellitus, Experimental/therapy , Capsules , Islets of Langerhans Transplantation/methods , Insulin , Extracellular Matrix , Glucose/pharmacology , Alginates/pharmacology , Cytokines
4.
Nat Commun ; 14(1): 2942, 2023 05 23.
Article in English | MEDLINE | ID: mdl-37221160

ABSTRACT

With the increasing global demand for meat, cultured meat technologies are emerging, offering more sustainable solutions that aim to evade a future shortage of meat. Here, we demonstrate a cultured meat platform composed of edible microcarriers and an oleogel-based fat substitute. Scalable expansion of bovine mesenchymal stem cells on edible chitosan-collagen microcarriers is optimized to generate cellularized microtissues. In parallel, an oleogel system incorporated with plant protein is developed as a fat substitute, which is comparable to beef fat in appearance and texture. Combining the cellularized microtissues with the developed fat substitute, two types of cultured meat prototypes are introduced: layered cultured meat and burger-like cultured meat. While the layered prototype benefits enhanced stiffness, the burger-like prototype has a marbling meat-like appearance and a softer texture. Overall, this platform and the established technological basis may contribute to the development of different cultured meat products and promote their commercial production.


Subject(s)
Chitosan , Fat Substitutes , Meat Products , Animals , Cattle , Meat
5.
Int J Mol Sci ; 22(21)2021 Oct 27.
Article in English | MEDLINE | ID: mdl-34769054

ABSTRACT

Porcine extracellular matrix (pECM)-derived hydrogels were introduced, in recent years, aiming to benefit the pECM's microstructure and bioactivity, while controlling the biomaterial's physical and mechanical properties. The use of pECM from different tissues, however, offers tissue-specific features that can better serve different applications. In this study, pECM hydrogels derived from cardiac, artery, pancreas, and adipose tissues were compared in terms of composition, structure, and mechanical properties. While major similarities were demonstrated between all the pECM hydrogels, their distinctive attributes were also identified, and their substantial effects on cell-ECM interactions were revealed. Furthermore, through comprehensive protein and gene expression analyses, we show, for the first time, that each pECM hydrogel supports the spontaneous differentiation of induced pluripotent stem cells towards the resident cells of its origin tissue. These findings imply that the origin of ECM should be carefully considered when designing a biomedical platform, to achieve a maximal bioactive impact.


Subject(s)
Extracellular Matrix/metabolism , Hydrogels/metabolism , Hydrogels/pharmacology , Adipose Tissue/drug effects , Animals , Cell Differentiation/drug effects , Cell Proliferation/drug effects , Induced Pluripotent Stem Cells/drug effects , Swine , Tissue Engineering/methods
6.
J Control Release ; 337: 472-481, 2021 09 10.
Article in English | MEDLINE | ID: mdl-34015401

ABSTRACT

Osteoarthritis (OA) is a chronic degenerative disease, which affects the joints and is characterized by inflammation, cartilage loss and bone changes. Nowadays, there are no treatments for OA, and current therapies are focused on relieving the symptoms. As a new therapy approach, micro and nanoparticles have been extensively explored and among all the studied particles, the use of cell-membrane-based particles is expanding. Another promising approach studied to treat OA, is the use of mesenchymal stem cells (MSCs) which play an important role modulating inflammation. We developed a novel kind of MSCs' cytoplasmic-membrane-based nanoparticles, termed nano-ghosts (NGs). Retaining MSCs' surface properties and lacking cells' internal machinery allow the NGs to have immunomodulatory capacity and to be immune-evasive while not susceptible to host-induced changes. In this study, we demonstrate NGs' ability to target cartilage tissues, in vitro and in vivo, while modulating the inflammatory process. In vivo studies demonstrated NGs ability to act as an immunomodulatory drug slowing down cartilage degeneration process. Our proof-of-concept experiments show that NGs system is a versatile nano-carrier system, capable of therapeutics loading, with targeting capabilities towards healthy and inflamed cartilage cells. Our results, along with previously published data, clearly reveal the NGs system as a promising nano-carrier platform and as a potential immunomodulatory drug for several inflammation-related diseases.


Subject(s)
Mesenchymal Stem Cells , Nanoparticles , Osteoarthritis , Cartilage , Humans , Immunomodulation , Osteoarthritis/drug therapy
7.
J Control Release ; 333: 28-40, 2021 05 10.
Article in English | MEDLINE | ID: mdl-33741386

ABSTRACT

Antisense oligonucleotides (ASOs) carry an enormous therapeutic potential in different research areas, however, the lack of appropriate carriers for their delivery to the target tissues is hampering their clinical translation. The present study investigates the application of novel biomimetic nano-vesicles, Nano-Ghosts (NGs), for the delivery of ASOs to human mesenchymal stem cells (MSCs), using a microRNA inhibitor (antimiR) against miR-221 as proof-of-concept. The integration of this approach with a hyaluronic acid-fibrin (HA-FB) hydrogel scaffold is also studied, thus expanding the potential of NGs applications in regenerative medicine. The study shows robust antimiR encapsulation in the NGs using electroporation and the NGs ability to be internalized in MSCs and to deliver their cargo while avoiding endo-lysosomal degradation. This leads to rapid and strong knock-down of miR-221 in hMSCs in vitro, both in 2D and 3D hydrogel culture conditions (>90% and > 80% silencing efficiency, respectively). Finally, in vivo studies performed with an osteochondral defect model demonstrate the NGs ability to effectively deliver antimiR to endogenous cells. Altogether, these results prove that the NGs can operate as stand-alone system or as integrated platform in combination with scaffolds for the delivery of ASOs for a wide range of applications in drug delivery and regenerative medicine.


Subject(s)
Mesenchymal Stem Cells , MicroRNAs , Biomimetics , Humans , Hydrogels , Oligonucleotides, Antisense
8.
Front Oncol ; 10: 1659, 2020.
Article in English | MEDLINE | ID: mdl-32984039

ABSTRACT

INTRODUCTION: Colorectal cancer (CC) is the third most common type of cancer, accounting for 10% of all cancer cases. Adjuvant chemotherapy is recommended in stages II-III CC. Wheatgrass juice (WGJ) from wheat seeds has high nutritional values, may induce synergistic benefits to chemotherapy and may attenuate chemotherapy-related side effects. Extracellular vesicles (EVs) are subcellular membrane blebs. EVs include exosomes (generated in the endosome, in size <150 nm) and microvesicles (shed from the plasma cell membrane) provide information on their parental cells and play a role in intercellular communication. We aimed to elucidate the effects of chemotherapy administration with supportive treatment of WGJ on CC patients' EVs characteristics. METHODS: EVs were isolated from the blood samples of 15 healthy controls (HCs) and 50 CC patients post-surgery, treated by chemotherapy, with or without additional daily WGJ. Blood samples were taken before, during, and at the end of chemotherapy. EVs were characterized by size, concentration, membrane antigens and cytokine content using nanoparticle-tracking analysis, western blot, flow cytometry, and protein array methods. RESULTS: EVs were found to be similar by size and concentration with reduced levels of exosome markers (CD81) on samples at the end of combined treatment (chemotherapy and WGJ). Higher levels of endothelial EVs, which may indicate impairment of the vascular endothelial cells during treatment, were found in CC patients treated by chemotherapy only compared to those with chemotherapy and daily WGJ. Also, EVs thrombogenicity was lower in patients added WGJ compared to patients who had only chemotherapy (levels of tissue factor p = 0.029 and endothelial protein C receptor p = 0.005). Following treatments, levels of vascular endothelial growth factor receptors (VEGFR-1) and the majority of growth-factors/pro-inflammatory cytokines were higher in EVs of patients treated by chemotherapy only than in EVs obtained from patients with the combined treatment. CONCLUSION: Daily consumption of WGJ during chemotherapy may reduce vascular damage and chemotherapy-related thrombogenicity, growth factors and cytokines, as reflected by the characteristics of patient's EVs.

9.
FASEB J ; 34(6): 7745-7758, 2020 06.
Article in English | MEDLINE | ID: mdl-32337805

ABSTRACT

The field of angiogenesis research provides deep understanding regarding this important process, which plays fundamental roles in tissue development and different abnormalities. In vitro models offer the advantages of low-cost high-throughput research of angiogenesis while sparing animal lives, and enabling the use of human cells. Nevertheless, prevailing in vitro models lack stability and are limited to a few days' assays. This study, therefore, examines the hypothesis that closely mimicking the vascular microenvironment can more reliably support longer angiogenesis processes in vitro. To this end, porcine arterial extracellular matrix (paECM)- a key component of blood vessels-was isolated and processed into a thermally induced hydrogel and characterized in terms of composition, structure, and mechanical properties, thus confirming the preservation of important characteristics of arterial extracellular matrix. This unique hydrogel was further tailored into a three-dimensional model of angiogenesis using endothelial cells and supporting cells, in a configuration that allows high-throughput quantitative analysis of cell viability and proliferation, cell migration, and apoptosis, thus revealing the advantages of paECM over frequently used biomaterials. Markedly, when applied with well-known effectors of angiogenesis, the model measures reflected the expected response, hence validating its efficacy and establishing its potential as a promising tool for the research of angiogenesis.


Subject(s)
Arteries/cytology , Extracellular Matrix/physiology , Hydrogels/pharmacology , Neovascularization, Pathologic/pathology , Neovascularization, Physiologic/drug effects , Animals , Apoptosis/drug effects , Biocompatible Materials/pharmacology , Cell Movement/drug effects , Cell Proliferation/drug effects , Cell Survival/drug effects , Cells, Cultured , Human Umbilical Vein Endothelial Cells/cytology , Humans , Neovascularization, Physiologic/physiology , Swine , Tissue Engineering/methods , Tissue Scaffolds
10.
ACS Appl Bio Mater ; 3(8): 4974-4986, 2020 Aug 17.
Article in English | MEDLINE | ID: mdl-35021675

ABSTRACT

The basic requirement of any engineered scaffold is to mimic the native tissue extracellular matrix (ECM). Despite substantial strides in understanding the ECM, scaffold fabrication processes of sufficient product robustness and bioactivity require further investigation, owing to the complexity of the natural ECM. A promising bioacive platform for cardiac tissue engineering is that of decellularized porcine cardiac ECM (pcECM, used here as a soft tissue representative model). However, this platform's complexity and batch-to-batch variability serve as processing limitations in attaining a robust and tunable cardiac tissue-specific bioactive scaffold. To address these issues, we fabricated 3D composite scaffolds (3DCSs) that demonstrate comparable physical and biochemical properties to the natural pcECM using wet electrospinning and functionalization with a pcECM hydrogel. The fabricated 3DCSs are non-immunogenic in vitro and support human mesenchymal stem cells' proliferation. Most importantly, the 3DCSs demonstrate tissue-specific bioactivity in inducing spontaneous cardiac lineage differentiation in human induced pluripotent stem cells (hiPSC) and further support the viability, functionality, and maturation of hiPSC-derived cardiomyocytes. Overall, this work illustrates the technology to fabricate robust yet tunable 3D scaffolds of tissue-specific bioactivity (with a proof of concept provided for cardiac tissues) as a platform for basic materials science studies and possible future R&D application in regenerative medicine.

11.
Methods ; 177: 126-134, 2020 05 01.
Article in English | MEDLINE | ID: mdl-31794834

ABSTRACT

Currently, nano-carriers for anti-cancer drug delivery are complex systems, which struggle with immunogenicity and enhanced permeability effect (EPR)-related problems that halt the clinical translation of many therapeutics. Consequently, a rapidly growing field of research has been focusing on biomimetic nano-vesicles (BNVs) as an effective delivery alternative. Nevertheless, the translation of many BNVs is limited due to scalability problems, inconsistent production process, and insufficient loading efficiency. Here we discuss the process of our previously published BNVs, termed Nano-Ghosts (NGs), which are produced from the membrane of mesenchymal stem cells. We demonstrate the flexibility of the process, while alternating physical methodologies (sonication or extrusion) to produce the NGs while preserving their desired characteristics. We also show that our NGs can be labeled using multiple methods (fluorescence, radiolabeling, and genetic engineering) for tracking and diagnostic purposes. Lastly, we demonstrate that the loading efficiency can be improved by using electroporation to accommodate a range of therapeutics (small molecules, peptides and DNA) that can be delivered by the NGs. Our results emphasize the robustness of the NGs technology, its versatility and a vast range of applications, differentiating it from other BNVs and leading the way towards clinical translation.


Subject(s)
Biomimetic Materials/chemistry , Drug Compounding/methods , Drug Delivery Systems/methods , Extracellular Vesicles/metabolism , Mesenchymal Stem Cells/chemistry , A549 Cells , Bioengineering/methods , Biological Transport , Biomimetic Materials/metabolism , Cell Membrane/chemistry , Cell Membrane/metabolism , Drug Liberation , Electroporation/methods , Extracellular Vesicles/chemistry , Extracellular Vesicles/transplantation , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Humans , Imatinib Mesylate/metabolism , Imatinib Mesylate/pharmacology , Kinetics , Mesenchymal Stem Cells/metabolism , Nanostructures/chemistry , Peptides/metabolism , Peptides/pharmacology , Sonication/methods , Staining and Labeling/methods
12.
Acta Biomater ; 92: 145-159, 2019 07 01.
Article in English | MEDLINE | ID: mdl-31075518

ABSTRACT

Cardiac tissue engineering provides unique opportunities for cardiovascular disease modeling, drug testing, and regenerative medicine applications. To recapitulate human heart tissue, we combined human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) with a chitosan-enhanced extracellular-matrix (ECM) hydrogel, derived from decellularized pig hearts. Ultrastructural characterization of the ECM-derived engineered heart tissues (ECM-EHTs) revealed an anisotropic muscle structure, with embedded cardiomyocytes showing more mature properties than 2D-cultured hiPSC-CMs. Force measurements confirmed typical force-length relationships, sensitivity to extracellular calcium, and adequate ionotropic responses to contractility modulators. By combining genetically-encoded calcium and voltage indicators with laser-confocal microscopy and optical mapping, the electrophysiological and calcium-handling properties of the ECM-EHTs could be studied at the cellular and tissue resolutions. This allowed to detect drug-induced changes in contraction rate (isoproterenol, carbamylcholine), optical signal morphology (E-4031, ATX2, isoproterenol, ouabin and quinidine), cellular arrhythmogenicity (E-4031 and ouabin) and alterations in tissue conduction properties (lidocaine, carbenoxolone and quinidine). Similar assays in ECM-EHTs derived from patient-specific hiPSC-CMs recapitulated the abnormal phenotype of the long QT syndrome and catecholaminergic polymorphic ventricular tachycardia. Finally, programmed electrical stimulation and drug-induced pro-arrhythmia led to the development of reentrant arrhythmias in the ECM-EHTs. In conclusion, a novel ECM-EHT model was established, which can be subjected to high-resolution long-term serial functional phenotyping, with important implications for cardiac disease modeling, drug testing and precision medicine. STATEMENT OF SIGNIFICANCE: One of the main objectives of cardiac tissue engineering is to create an in-vitro muscle tissue surrogate of human heart tissue. To this end, we combined a chitosan-enforced cardiac-specific ECM hydrogel derived from decellularized pig hearts with human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) from healthy-controls and patients with inherited cardiac disorders. We then utilized genetically-encoded calcium and voltage fluorescent indicators coupled with unique optical imaging techniques and force-measurements to study the functional properties of the generated engineered heart tissues (EHTs). These studies demonstrate the unique potential of the new model for physiological and pathophysiological studies (assessing contractility, conduction and reentrant arrhythmias), novel disease modeling strategies ("disease-in-a-dish" approach) for studying inherited arrhythmogenic disorders, and for drug testing applications (safety pharmacology).


Subject(s)
Arrhythmias, Cardiac/drug therapy , Drug Evaluation, Preclinical , Extracellular Matrix/metabolism , Heart/physiology , Induced Pluripotent Stem Cells/cytology , Models, Cardiovascular , Myocytes, Cardiac/cytology , Tissue Engineering/methods , Action Potentials/drug effects , Animals , Arrhythmias, Cardiac/pathology , Calcium/metabolism , Cardiovascular Agents/pharmacology , Disease Models, Animal , Extracellular Matrix/drug effects , Humans , Hydrogels/pharmacology , Induced Pluripotent Stem Cells/drug effects , Myocardial Contraction/drug effects , Myocytes, Cardiac/drug effects , Organ Specificity , Swine
13.
Adv Healthc Mater ; 8(10): e1801589, 2019 05.
Article in English | MEDLINE | ID: mdl-30963725

ABSTRACT

Nanoghosts (NGs) are nanovesicles reconstructed from the cytoplasmic membranes of mesenchymal stem cells (MSCs). By retaining MSC membranes, the NGs retain the ability of these cells to home in on multiple tumors, laying the foundations, thereby, for the development of a targeted drug delivery platform. The susceptibility of MSCs to functional changes, following their exposure to cytokines or cancer-derived conditioned-media (CM), presents the opportunity to modify the NGs by conditioning their source cells. This opportunity is investigated by comparing the membrane protein composition and the tumor uptake of NGs derived from naïve MSCs (N-NG) against conditioned NGs made from MSCs pre-treated with conditioned-media (CM-NG) or with a mix of the proinflammatory cytokines TNF-α and IL-1ß (Cyto-NG). CM-NGs are found to be more targeted towards immune cells than Cyto- or N-NGs, while Cyto-NGs are the most tumor-targeted ones, with similar immune-targeting capacity as N-NGs but with a higher affinity towards endothelial cells. Proteomic variations were wider in the CM-NGs, with exceptionally higher levels of ICAM-1 compared to N- and Cyto-NGs. From a translational point of view, the data show that the tumor-targeting ability of the NGs, and possibly that of other MSC-derived extracellular vesicles, can be enhanced by simple conditioning of their source cells.


Subject(s)
Cell Membrane/metabolism , Culture Media, Conditioned/pharmacology , Cytokines/pharmacology , Mesenchymal Stem Cells/drug effects , Animals , Cell Line , Cell Membrane/chemistry , Humans , Integrins/metabolism , Intercellular Adhesion Molecule-1/metabolism , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/metabolism , Mice , Mice, Nude , Nanostructures/chemistry , Neoplasms/immunology , Neoplasms/metabolism , Neoplasms/pathology , Proteome/metabolism
14.
Sci Rep ; 9(1): 5578, 2019 04 03.
Article in English | MEDLINE | ID: mdl-30944384

ABSTRACT

High hopes are held for cardiac regenerative therapy, driving a vast research effort towards the development of various cardiac scaffolds using diverse technologies and materials. Nevertheless, the role of factors such as fabrication process and structure in determining scaffold's characteristics is yet to be discovered. In the present study, the effects of 3D structure and processing method on cardiac scaffolds are addressed using three distinct scaffolds made through different production technologies from the same biomaterial: decellularized porcine cardiac extracellular matrix (pcECM). pcECM patch, injectable pcECM hydrogel, and electrospun pcECM scaffolds were all proven as viable prospective therapies for MI, thus generally preserving pcECM beneficial properties. Yet, as we demonstrate, minor differences in scaffolds composition and micro-morphology as well as substantial differences in their mechanical properties, which arise from their production process, highly affect the interactions of the scaffold with both proliferating cells and functional cells. Hence, the rates of cell attachment, survival, and proliferation significantly vary between the different scaffolds. Moreover, major differences in cell morphology and alignment as well as in matrix remodeling are obtained. Overall, the effects revealed herein can guide a more rational scaffold design for the improved cellular or acellular treatment of different cardiac disease scenarios.


Subject(s)
Extracellular Matrix/physiology , Heart/physiology , Tissue Engineering/methods , Animals , Cell Proliferation/drug effects , Cell Proliferation/physiology , Cell Survival/drug effects , Cell Survival/physiology , Heart/drug effects , Hydrogels/pharmacology , Swine , Tissue Scaffolds
15.
J Control Release ; 293: 215-223, 2019 01 10.
Article in English | MEDLINE | ID: mdl-30527755

ABSTRACT

The rapid development of biomimetic cell membrane-based nanoparticles is still overshadowed by many practical challenges, one of which is the difficulty to precisely measure the biodistribution of such nanoparticles. Currently, this challenge is mostly addressed using fluorescent techniques with limited sensitivity, or radioactive labeling methods, which rarely account for the nanoparticles themselves, but their payloads instead. Here we report the development of a robust method for the innate radioactive labeling of cells and membrane-based nanoparticles and their consequent sensitive detection and biodistribution measurements. The preclinical potential of this method was demonstrated with Nano-Ghosts (NGs), manufactured from the cytoplasmic membranes of mesenchymal stem cells cultured with radioactively-labeled linoleic acid and achieving a cell labeling efficiency of 36%. Radiolabeling did not affect the physiochemical properties of the NGs, which stably retained their radiolabels. Using radioactivity measurements, we are now able to determine precisely the amount of NGs uptaken by tissues and cells, thereby providing further support to our presumed active NG targeting mechanisms. Biodistribution studies comparing radiolabeled NGs to fluorescently-labeled ones have validated our method and revealed new information, which could not be obtained otherwise, regarding the NGs' unique kinetics and rapid clearance, supporting their excellent safety profiles. The reported approach may be expanded to other membrane-based entities to facilitate and hasten their preclinical development and be used in parallel with other labeling methods to provide different and additional information.


Subject(s)
Cell Membrane , Mesenchymal Stem Cells , Nanostructures/administration & dosage , A549 Cells , Animals , Carbon Radioisotopes , Humans , Linoleic Acid/administration & dosage , Male , Mice, Inbred C57BL , Mice, Nude , Tissue Distribution
16.
Sci Rep ; 8(1): 3937, 2018 03 02.
Article in English | MEDLINE | ID: mdl-29500447

ABSTRACT

Tissue development, regeneration, or de-novo tissue engineering in-vitro, are based on reciprocal cell-niche interactions. Early tissue formation mechanisms, however, remain largely unknown given complex in-vivo multifactoriality, and limited tools to effectively characterize and correlate specific micro-scaled bio-mechanical interplay. We developed a unique model system, based on decellularized porcine cardiac extracellular matrices (pcECMs)-as representative natural soft-tissue biomaterial-to study a spectrum of common cell-niche interactions. Model monocultures and 1:1 co-cultures on the pcECM of human umbilical vein endothelial cells (HUVECs) and human mesenchymal stem cells (hMSCs) were mechano-biologically characterized using macro- (Instron), and micro- (AFM) mechanical testing, histology, SEM and molecular biology aspects using RT-PCR arrays. The obtained data was analyzed using developed statistics, principal component and gene-set analyses tools. Our results indicated biomechanical cell-type dependency, bi-modal elasticity distributions at the micron cell-ECM interaction level, and corresponding differing gene expression profiles. We further show that hMSCs remodel the ECM, HUVECs enable ECM tissue-specific recognition, and their co-cultures synergistically contribute to tissue integration-mimicking conserved developmental pathways. We also suggest novel quantifiable measures as indicators of tissue assembly and integration. This work may benefit basic and translational research in materials science, developmental biology, tissue engineering, regenerative medicine and cancer biomechanics.


Subject(s)
Cell Lineage , Biomechanical Phenomena , Cell Differentiation , Coculture Techniques , Endothelium, Vascular/cytology , Endothelium, Vascular/metabolism , Extracellular Matrix/metabolism , Gene Expression Profiling , Human Umbilical Vein Endothelial Cells , Humans , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/metabolism , Microscopy, Atomic Force , Microscopy, Electron, Scanning , Microscopy, Fluorescence , Tissue Engineering/methods
17.
Cancer Res ; 78(5): 1253-1265, 2018 03 01.
Article in English | MEDLINE | ID: mdl-29301792

ABSTRACT

Stromal cells residing in the tumor microenvironment contribute to the development of therapy resistance. Here we show that chemotherapy-educated mesenchymal stem cells (MSC) promote therapy resistance via cross-talk with tumor-initiating cells (TIC), a resistant tumor cell subset that initiates tumorigenesis and metastasis. In response to gemcitabine chemotherapy, MSCs colonized pancreatic adenocarcinomas in large numbers and resided in close proximity to TICs. Furthermore, gemcitabine-educated MSCs promoted the enrichment of TICs in vitro and enhance tumor growth in vivo These effects were dependent on the secretion of CXCL10 by gemcitabine-educated MSCs and subsequent activation of the CXCL10-CXCR3 axis in TICs. In an orthotopic pancreatic tumor model, targeting TICs using nanovesicles (called nanoghosts) derived from MSC membranes and loaded with a CXCR3 antagonist enhanced therapy outcome and delayed tumor regrowth when administered in combination with gemcitabine. Overall, our results establish a mechanism through which MSCs promote chemoresistance, and propose a novel drug delivery system to target TICs and overcome this resistance.Significance: These results establish a mechanism by which mesenchyme stem cells in the tumor microenvironment promote chemoresistance, and they propose a novel drug delivery system to overcome this challenge. Cancer Res; 78(5); 1253-65. ©2018 AACR.


Subject(s)
Biomarkers, Tumor/metabolism , Cell Transformation, Neoplastic/pathology , Deoxycytidine/analogs & derivatives , Lung Neoplasms/pathology , Mesenchymal Stem Cells/pathology , Neoplastic Stem Cells/pathology , Pancreatic Neoplasms/pathology , Animals , Antimetabolites, Antineoplastic/pharmacology , Apoptosis , Biomarkers, Tumor/genetics , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/metabolism , Carcinoma, Non-Small-Cell Lung/pathology , Cell Communication , Cell Proliferation , Cell Transformation, Neoplastic/drug effects , Cell Transformation, Neoplastic/metabolism , Chemokine CXCL10/genetics , Chemokine CXCL10/metabolism , Deoxycytidine/pharmacology , Gene Expression Regulation, Neoplastic/drug effects , Humans , Lung Neoplasms/drug therapy , Lung Neoplasms/metabolism , Mesenchymal Stem Cells/drug effects , Mesenchymal Stem Cells/metabolism , Mice , Mice, SCID , Neoplastic Stem Cells/drug effects , Neoplastic Stem Cells/metabolism , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/metabolism , Receptors, CXCR3/genetics , Receptors, CXCR3/metabolism , Tumor Cells, Cultured , Tumor Microenvironment , Xenograft Model Antitumor Assays , Gemcitabine , Pancreatic Neoplasms
18.
Sci Rep ; 7(1): 15060, 2017 11 08.
Article in English | MEDLINE | ID: mdl-29118380

ABSTRACT

Carcinomas constitute over 80% of all human cancer types with no effective therapy for metastatic disease. Here, we demonstrate, for the first time, the efficacy of therapeutic-ultrasound (TUS) to deliver a human tumor suppressor gene, hSef-b, to prostate tumors in vivo. Sef is downregulated in various human carcinomas, in a manner correlating with tumor aggressiveness. In vitro, hSef-b inhibited proliferation of TRAMP C2 cells and attenuated activation of ERK/MAPK and the master transcription factor NF-κB in response to FGF and IL-1/TNF, respectively. In vivo, transfection efficiency of a plasmid co-expressing hSef-b/eGFP into TRAMP C2 tumors was 14.7 ± 2.5% following a single TUS application. Repeated TUS treatments with hSef-b plasmid, significantly suppressed prostate tumor growth (60%) through inhibition of cell proliferation (60%), and reduction in blood vessel density (56%). In accordance, repeated TUS-treatments with hSef-b significantly inhibited in vivo expression of FGF2 and MMP-9. FGF2 is a known mitogen, and both FGF2/MMP-9 are proangiogenic factors. Taken together our results strongly suggest that hSef-b acts in a cell autonomous as well as non-cell autonomous manner. Moreover, the study demonstrates the efficacy of non-viral TUS-based hSef-b gene delivery approach for the treatment of prostate cancer tumors, and possibly other carcinomas where Sef is downregulated.


Subject(s)
Gene Transfer Techniques , Neovascularization, Pathologic/prevention & control , Prostatic Neoplasms/therapy , Receptors, Interleukin/genetics , Tumor Burden/genetics , Ultrasonic Therapy/methods , Animals , Cell Line, Tumor , Cell Proliferation/genetics , Gene Expression Regulation, Neoplastic , HEK293 Cells , HeLa Cells , Humans , MAP Kinase Signaling System/genetics , Male , Mice, Inbred C57BL , Neovascularization, Pathologic/genetics , Prostatic Neoplasms/blood supply , Prostatic Neoplasms/genetics , Receptors, Interleukin/metabolism
19.
Biomater Sci ; 5(6): 1183-1194, 2017 May 30.
Article in English | MEDLINE | ID: mdl-28513656

ABSTRACT

Various extracellular matrix (ECM) scaffolds, isolated through decellularization, were suggested as ideal biomimetic materials for 'Functional tissue engineering' (FTE). The decellularization process comprises a compromise between damaging and preserving the ultrastructure and composition of ECM-previously shown to affect cell survival, proliferation, migration, organization, differentiation and maturation. Inversely, the effects of cells on the ECM constructs' biophysical properties, under physiological-like conditions, remain still largely unknown. We hypothesized that by re-cellularizing porcine cardiac ECM (pcECM, as a model scaffold) some of the original biophysical properties of the myocardial tissue can be restored, which are related to the scaffold's surface and the bulk modifications consequent to cellularization. We performed a systematic biophysical assessment of pcECM scaffolds seeded with human mesenchymal stem cells (MSCs), a common multipotent cell source in cardiac regenerative medicine. We report a new type of FTE study in which cell interactions with a composite-scaffold were evaluated from the perspective of their contribution to the biophysical properties of the construct surface (FTIR, WETSEM™) and bulk (DSC, TGA, and mechanical testing). The results obtained were compared with acellular pcECM and native ventricular tissue serving as negative and positive controls, respectively. MSC recellularization resulted in an inter-fiber plasticization effect, increased protein density, masking of acylated glycosaminoglycans (GAGs) and active pcECM remodelling which further stabilized the reseeded construct and increased its denaturation resistance. The systematic approach presented herein, therefore, identifies cells as "biological plasticizers" and yields important methodologies, understanding, and data serving both as a reference as well as possible 'design criteria' for future studies in FTE.


Subject(s)
Extracellular Matrix/chemistry , Mesenchymal Stem Cells/cytology , Myocardium/cytology , Tissue Engineering/methods , Tissue Scaffolds/chemistry , Animals , Cell Differentiation , Cell Line , Cell Proliferation , Glycosaminoglycans/chemistry , Humans , Myocardium/chemistry , Swine , Tensile Strength
20.
Sci Rep ; 7: 42046, 2017 02 07.
Article in English | MEDLINE | ID: mdl-28169315

ABSTRACT

Mesenchymal stem cells (MSCs) hold tremendous potential as a targeted cell-based delivery platform for inflammatory and cancer therapy. Genetic manipulation of MSCs, however, is challenging, and therefore, most studies using MSCs as therapeutic cell carriers have utilized viral vectors to transduce the cells. Here, we demonstrate, for the first time, an alternative approach for the efficient transfection of MSCs; therapeutic ultrasound (TUS). Using TUS with low intensities and moderate frequencies, MSCs were transfected with a pDNA encoding for PEX, a protein that inhibits tumor angiogenesis, and studied as a cell vehicle for in vivo tumor therapy. TUS application did not alter the MSCs' stemness or their homing capabilities, and the transfected MSCs transcribed biologically active PEX. Additionally, in a mouse model, 70% inhibition of prostate tumor growth was achieved following a single I.V. administration of MSCs that were TUS-transfected with pPEX. Further, the repeated I.V. administration of TUS-pPEX transfected-MSCs enhanced tumor inhibition up to 84%. Altogether, these results provide a proof of concept that TUS-transfected MSCs can be effectively used as a cell-based delivery approach for the prospective treatment of cancer.


Subject(s)
Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells/metabolism , Molecular Targeted Therapy/methods , PHEX Phosphate Regulating Neutral Endopeptidase/genetics , Prostatic Neoplasms/therapy , Transfection/methods , Animals , Apoptosis/drug effects , Cell Line, Tumor , Cell Movement/drug effects , Culture Media, Conditioned/pharmacology , Gene Expression , Human Umbilical Vein Endothelial Cells , Humans , Male , Mesenchymal Stem Cells/cytology , Mice , Mice, Nude , PHEX Phosphate Regulating Neutral Endopeptidase/metabolism , Plasmids/chemistry , Plasmids/metabolism , Prostatic Neoplasms/genetics , Prostatic Neoplasms/metabolism , Prostatic Neoplasms/pathology , Rats , Sonication/methods , Transfection/instrumentation , Transgenes , Transplantation, Heterologous , Tumor Burden , Xenograft Model Antitumor Assays
SELECTION OF CITATIONS
SEARCH DETAIL
...