Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 35
Filter
1.
PLoS One ; 18(1): e0274371, 2023.
Article in English | MEDLINE | ID: mdl-36638091

ABSTRACT

The objective of this study was to investigate the effect of varying roughage and concentrate proportions, in diet of crossbreed dairy cattle, on the composition and associated functional genes of rumen and fecal microbiota. We also explored fecal samples as a proxy for rumen liquor samples. Six crossbred dairy cattle were reared on three diets with an increasing concentrate and reducing roughage amount in three consecutive 10-day periods. After each period, individual rumen liquor and fecal samples were collected and analyzed through shotgun metagenomic sequencing. Average relative abundance of identified Operational Taxonomic Units (OTU) and microbial functional roles from all animals were compared between diets and sample types (fecal and rumen liquor). Results indicated that dietary modifications significantly affected several rumen and fecal microbial OTUs. In the rumen, an increase in dietary concentrate resulted in an upsurge in the abundance of Proteobacteria, while reducing the proportions of Bacteroidetes and Firmicutes. Conversely, changes in microbial composition in fecal samples were not consistent with dietary modification patterns. Microbial functional pathway classification identified that carbohydrate metabolism and protein metabolism pathways dominated microbial roles. Assessment of dietary effects on the predicted functional roles of these microbiota revealed that a high amount of dietary concentrate resulted in an increase in central carbohydrate metabolism and a corresponding reduction in protein synthesis. Moreover, we identified several microbial stress-related responses linked to dietary changes. Bacteroides and Clostridium genera were the principal hosts of these microbial functions. Therefore, the roughage to concentrate proportion has more influence on the microbial composition and microbial functional genes in rumen samples than fecal samples. As such, we did not establish a significant relationship between the rumen and fecal metagenome profiles, and the rumen and fecal microbiota from one animal did not correlate more than those from different animals.


Subject(s)
Microbiota , Rumen , Animals , Cattle , Rumen/microbiology , Microbiota/genetics , Metagenome , Proteobacteria/genetics , Dietary Fiber/metabolism , Diet/veterinary , Animal Feed/analysis
2.
BMC Genomics ; 23(1): 522, 2022 Jul 19.
Article in English | MEDLINE | ID: mdl-35854219

ABSTRACT

BACKGROUND: African swine fever (ASF) is a lethal hemorrhagic disease affecting domestic pigs resulting in up to 100% mortality rates caused by the ASF virus (ASFV). The locally-adapted pigs in South-western Kenya have been reported to be resilient to disease and harsh climatic conditions and tolerate ASF; however, the mechanisms by which this tolerance is sustained remain largely unknown. We evaluated the gene expression patterns in spleen tissues of these locally-adapted pigs in response to varying infective doses of ASFV to elucidate the virus-host interaction dynamics. METHODS: Locally adapted pigs (n = 14) were experimentally infected with a high dose (1x106HAD50), medium dose (1x104HAD50), and low dose (1x102HAD50) of the highly virulent genotype IX ASFV Ken12/busia.1 (Ken-1033) isolate diluted in PBS and followed through the course of infection for 29 days. The in vivo pig host and ASFV pathogen gene expression in spleen tissues from 10 pigs (including three from each infective group and one uninfected control) were analyzed in a dual-RNASeq fashion. We compared gene expression between three varying doses in the host and pathogen by contrasting experiment groups against the naïve control. RESULTS: A total of 4954 differentially expressed genes (DEGs) were detected after ASFV Ken12/1 infection, including 3055, 1771, and 128 DEGs in the high, medium, and low doses, respectively. Gene ontology and KEGG pathway analysis showed that the DEGs were enriched for genes involved in the innate immune response, inflammatory response, autophagy, and apoptosis in lethal dose groups. The surviving low dose group suppressed genes in pathways of physiopathological importance. We found a strong association between severe ASF pathogenesis in the high and medium dose groups with upregulation of proinflammatory cytokines and immunomodulation of cytokine expression possibly induced by overproduction of prostaglandin E synthase (4-fold; p < 0.05) or through downregulation of expression of M1-activating receptors, signal transductors, and transcription factors. The host-pathogen interaction resulted in induction of expression of immune-suppressive cytokines (IL-27), inactivation of autophagy and apoptosis through up-regulation of NUPR1 [5.7-fold (high dose) and 5.1-fold (medium dose) [p < 0.05] and IL7R expression. We detected repression of genes involved in MHC class II antigen processing and presentation, such as cathepsins, SLA-DQB1, SLA-DOB, SLA-DMB, SLA-DRA, and SLA-DQA in the medium and high dose groups. Additionally, the host-pathogen interaction activated the CD8+ cytotoxicity and neutrophil machinery by increasing the expression of neutrophils/CD8+ T effector cell-recruiting chemokines (CCL2, CXCL2, CXCL10, CCL23, CCL4, CXCL8, and CXCL13) in the lethal high and medium dose groups. The recovered pigs infected with ASFV at a low dose significantly repressed the expression of CXCL10, averting induction of T lymphocyte apoptosis and FUNDC1 that suppressed neutrophilia. CONCLUSIONS: We provide the first in vivo gene expression profile data from locally-adapted pigs from south-western Kenya following experimental infection with a highly virulent ASFV genotype IX isolate at varying doses that mimic acute and mild disease. Our study showed that the locally-adapted pigs induced the expression of genes associated with tolerance to infection and repression of genes involved in inflammation at varying levels depending upon the ASFV dose administered.


Subject(s)
African Swine Fever Virus , African Swine Fever , African Swine Fever/genetics , African Swine Fever Virus/genetics , Animals , Cytokines/genetics , Genotype , Kenya , Spleen , Sus scrofa/genetics , Swine , Transcriptome
3.
Pathogens ; 11(5)2022 Apr 23.
Article in English | MEDLINE | ID: mdl-35631023

ABSTRACT

One of the crucial public health problems today is the emerging and re-emerging of multidrug-resistant (MDR) bacteria coupled with a decline in the development of new antimicrobials. Non-typhoidal Salmonella (NTS) is classified among the MDR pathogens of international concern. To predict their MDR potentials, 23 assembled genomes of NTS from live cattle (n = 1), beef carcass (n = 19), butchers' hands (n = 1) and beef processing environments (n = 2) isolated from 830 wet swabs at the Yaounde abattoir between December 2014 and November 2015 were explored using whole-genome sequencing. Phenotypically, while 22% (n = 5) of Salmonella isolates were streptomycin-resistant, 13% (n = 3) were MDR. Genotypically, all the Salmonella isolates possessed high MDR potentials against several classes of antibiotics including critically important drugs (carbapenems, third-generation cephalosporin and fluoroquinolone). Moreover, >31% of NTS exhibited resistance potentials to polymyxin, considered as the last resort drug. Additionally, ≤80% of isolates harbored "silent resistant genes" as a potential reservoir of drug resistance. Our isolates showed a high degree of pathogenicity and possessed key virulence factors to establish infection even in humans. Whole-genome sequencing unveiled both broader antimicrobial resistance (AMR) profiles and inference of pathogen characteristics. This study calls for the prudent use of antibiotics and constant monitoring of AMR of NTS.

4.
BMJ Open ; 12(3): e056706, 2022 03 10.
Article in English | MEDLINE | ID: mdl-35273059

ABSTRACT

OBJECTIVES: To determine the causes of lobar pneumonia in rural Gambia. DESIGN AND SETTING: Population-based pneumonia surveillance at seven peripheral health facilities and two regional hospitals in rural Gambia. 7-valent pneumococcal conjugate vaccine (PCV7) was introduced routinely in August 2009 and replaced by PCV13 from May 2011. METHODS: Prospective pneumonia surveillance was undertaken among all ages with referral of suspected pneumonia cases to the regional hospitals. Blood culture and chest radiographs were performed routinely while lung or pleural aspirates were collected from selected, clinically stable patients with pleural effusion on radiograph and/or large, dense, peripheral consolidation. We used conventional microbiology, and from 8 April 2011 to 17 July 2012, used a multiplex PCR assay on lung and pleural aspirates. We calculated proportions with pathogens, associations between coinfecting pathogens and PCV effectiveness. PARTICIPANTS: 2550 patients were admitted with clinical pneumonia; 741 with lobar pneumonia or pleural effusion. We performed 181 lung or pleural aspirates and multiplex PCR on 156 lung and 4 pleural aspirates. RESULTS: Pathogens were detected in 116/160 specimens, the most common being Streptococcus pneumoniae(n=68), Staphylococcus aureus (n=26) and Haemophilus influenzae type b (n=11). Bacteria (n=97) were more common than viruses (n=49). Common viruses were bocavirus (n=11) and influenza (n=11). Coinfections were frequent (n=55). Moraxella catarrhalis was detected in eight patients and in every case there was coinfection with S. pneumoniae. The odds ratio of vaccine-type pneumococcal pneumonia in patients with two or three compared with zero doses of PCV was 0.17 (95% CI 0.06 to 0.51). CONCLUSIONS: Lobar pneumonia in rural Gambia was caused primarily by bacteria, particularly S. pneumoniae and S. aureus. Coinfection was common and M. catarrhalis always coinfected with S. pneumoniae. PCV was highly efficacious against vaccine-type pneumococcal pneumonia.


Subject(s)
Coinfection , Pleural Effusion , Pneumococcal Infections , Pneumonia, Pneumococcal , Viruses , Coinfection/epidemiology , Gambia/epidemiology , Humans , Infant , Lung , Pneumococcal Infections/prevention & control , Pneumococcal Vaccines/therapeutic use , Pneumonia, Pneumococcal/diagnosis , Pneumonia, Pneumococcal/epidemiology , Pneumonia, Pneumococcal/prevention & control , Prospective Studies , Staphylococcus aureus , Streptococcus pneumoniae/genetics
5.
Ecol Evol ; 12(3): e8713, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35342608

ABSTRACT

This study aimed at assessing haplotype diversity and population dynamics of three Congolese indigenous goat populations that included Kasai goat (KG), small goat (SG), and dwarf goat (DG) of the Democratic Republic of Congo (DRC). The 1169 bp d-loop region of mitochondrial DNA (mtDNA) was sequenced for 339 Congolese indigenous goats. The total length of sequences was used to generate the haplotypes and evaluate their diversities, whereas the hypervariable region (HVI, 453 bp) was analyzed to define the maternal variation and the demographic dynamic. A total of 568 segregating sites that generated 192 haplotypes were observed from the entire d-loop region (1169 bp d-loop). Phylogenetic analyses using reference haplotypes from the six globally defined goat mtDNA haplogroups showed that all the three Congolese indigenous goat populations studied clustered into the dominant haplogroup A, as revealed by the neighbor-joining (NJ) tree and median-joining (MJ) network. Nine haplotypes were shared between the studied goats and goat populations from Pakistan (1 haplotype), Kenya, Ethiopia and Algeria (1 haplotype), Zimbabwe (1 haplotype), Cameroon (3 haplotypes), and Mozambique (3 haplotypes). The population pairwise analysis (FST ) indicated a weak differentiation between the Congolese indigenous goat populations. Negative and significant (p-value <.05) values for Fu's Fs (-20.418) and Tajima's (-2.189) tests showed the expansion in the history of the three Congolese indigenous goat populations. These results suggest a weak differentiation and a single maternal origin for the studied goats. This information will contribute to the improvement of the management strategies and long-term conservation of indigenous goats in DRC.

6.
Plant Dis ; 106(6): 1736-1742, 2022 Jun.
Article in English | MEDLINE | ID: mdl-34962417

ABSTRACT

Ralstonia solanacearum is a pathogen causing bacterial wilt disease of potato, resulting in 70% potato production losses in Kenya. A study was conducted to determine the diversity of R. solanacearum species complex strains within the main potato-growing regions of Kenya. Potato tubers were collected in different potato-growing regions of Kenya from visibly wilted potato plants as well as samples of tomato, irrigation water, and cultures for pathogen isolation. Genomic DNA was isolated from 135 purified cultures of RSSC isolates and PCR-amplified using multiplex and sequevar primers targeting the endoglucanase (egl) partial gene sequences. Pathogenicity tests using R. solanacearum strain (phylotype II sequevar I) were done on the cultivars Kenya Karibu, Shangi, Chulu, Wanjiku, and MoneyMaker. Phylogenetic analysis of the partial egl gene identified two genospecies, R. pseudosolanacearum sp. nov. (1.5%) and R. solanacearum (98.5%). All R. solanacearum strains clustered in sequevar I and were distributed in all the potato-growing regions surveyed. The cultivars were grown in a greenhouse for two cycles in a randomized complete block design and inoculated with R. solanacearum strain. The severity scores were assessed and the area under the disease progress curve (AUDPC) was determined. All the cultivars tested for pathogenicity exhibited wilting symptoms at varying intervals after infection, with none showing complete resistance to R. solanacearum. Cultivar Shangi exhibited minimum disease severity and progression of 41.14% and AUDPC of 1041.7, respectively, while 'Kenya Karibu' was the most susceptible with a high progression rate of 68.24% and AUDPC of 1897.5, respectively. 'MoneyMaker', 'Chulu', and 'Wanjiku' showed no significant difference in disease severity, depicting a simultaneous rate of infection among them. These findings provide valuable information to better understand the pathogen genetic diversity in Kenya and how it spreads.


Subject(s)
Phylogeny , Plant Diseases , Ralstonia solanacearum , Solanum tuberosum , Kenya , Plant Diseases/microbiology , Ralstonia solanacearum/genetics , Solanum tuberosum/microbiology
7.
Plant Dis ; 106(1): 39-45, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34279983

ABSTRACT

The Potyvirus Moroccan watermelon mosaic virus (MWMV) naturally infects and severely threatens production of cucurbits and papaya. In this study, we identified and characterized MWMV isolated from pumpkin (Cucurbita moschata) intercropped with MWMV-infected papaya plants through next-generation sequencing (NGS) and Sanger sequencing approaches. Complete MWMV genome sequences were obtained from two pumpkin samples through NGS and validated using Sanger sequencing. The isolates shared 83.4 to 83.7% nucleotide (nt) and 92.3 to 95.1% amino acid (aa) sequence identities in the coat protein and 79.5 to 79.9% nt and 89.2 to 89.7% aa identities in the polyprotein with papaya isolates of MWMV. Phylogenetic analysis using complete polyprotein nt sequences revealed the clustering of both pumpkin isolates of MWMV with corresponding sequences of cucurbit isolates of the virus from other parts of Africa and the Mediterranean regions, distinct from a clade formed by papaya isolates. Through sap inoculation, a pumpkin isolate of MWMV was pathogenic on zucchini (Cucurbita pepo), watermelon (Citrullus lanatus), and cucumber (Cucumis sativus) but not on papaya. Conversely, the papaya isolate of MWMV was nonpathogenic on pumpkin, watermelon, and cucumber, but it infected zucchini. The results suggest the occurrence of two strains of MWMV in Kenya having different biological characteristics associated with the host specificity.[Formula: see text] Copyright © 2022 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Subject(s)
Cucurbita , Potyvirus , Kenya , Phylogeny , Plant Diseases , Potyvirus/genetics
8.
PLoS One ; 16(12): e0261218, 2021.
Article in English | MEDLINE | ID: mdl-34890445

ABSTRACT

A recent research study on prevalence of tick-borne pathogens in Burundi reported high prevalence and endemicity of Theileria parva, Anaplasma marginale and Babesia bigemina infections in cattle. Detailed information about tick species infesting animals, their distribution and genetic diversity in Burundi is outdated and limited. This study therefore assessed the prevalence and genetic diversity of tick species infesting cattle across agroecological zones (AEZs) in Burundi. A cross-sectional study on the occurrence of tick species was conducted in 24 districts of Burundi between October and December 2017. Differential identification and characterization of ticks collected was conducted using tick morphological keys and molecular tools (cox1 and 12S rRNA gene). Chi-square test was used to test for association between agroecological zones and the prevalence of tick species. Phylogenetic relationships were inferred using bayesian and maximum likelihood algorithms. A total of 483 ticks were collected from the five AEZs sampled. Six tick species comprising of Rhipicephalus appendiculatus, R. sanguineus, R. evertsi evertsi, R. microplus, R. decoloratus and Amblyomma variegatum were observed. Rhipicephalus appendiculatus were the most prevalent ticks (~45%). A total of 138 specimens (28%) were found to be Rhipicephalus microplus, suggesting an emerging threat for cattle farmers. Twelve R. appendiculatus cox1 haplotypes were obtained from 106 specimens that were sequenced. Two cox1 haplotypes of R. microplus which clustered into previously reported Clade A were observed. Rhipicephalus sanguineus and R. evertsi evertsi ticks, the vectors of numerous zoonotic pathogens, were collected from cattle, which constitute a high risk for public health. These findings reveal an overlapping distribution of tick vectors in Burundi. The design of ticks and tick-borne diseases control strategies should consider the distribution of different vectors across the AEZs particularly the presence of the highly invasive R. microplus tick in Burundi and the potential risk of introducing the pathogenic Babesia bovis.


Subject(s)
Cattle Diseases/epidemiology , Cattle Diseases/parasitology , Rhipicephalus/physiology , Tick Infestations/veterinary , Animals , Burundi/epidemiology , Cattle , Cross-Sectional Studies , Female , Phylogeny , Prevalence , Tick Infestations/epidemiology , Tick Infestations/parasitology
9.
Viruses ; 13(11)2021 11 15.
Article in English | MEDLINE | ID: mdl-34835091

ABSTRACT

African swine fever (ASF) is a highly infectious and fatal haemorrhagic disease of pigs that is caused by a complex DNA virus of the genus Asfivirus and Asfarviridae African suids family. The disease is among the most devastating pig diseases worldwide including Africa. Although the disease was first reported in the 19th century, it has continued to spread in Africa and other parts of the world. Globally, the rising demand for pork and concomitant increase in transboundary movements of pigs and pork products is likely to increase the risk of transmission and spread of ASF and pose a major challenge to the pig industry. Different genotypes of the ASF virus (ASFV) with varying virulence have been associated with different outbreaks in several countries in sub-Saharan Africa (SSA) and worldwide, and understanding genotype circulation will be important for ASF prevention and control strategies. ASFV genotypes unique to Africa have also been reported in SSA. This review briefly recounts the biology, genomics and genotyping of ASFV and provides an account of the different genotypes circulating in SSA. The review also highlights prevention, control and progress on vaccine development and identifies gaps in knowledge of ASFV genotype circulation in SSA that need to be addressed.


Subject(s)
African Swine Fever Virus/genetics , African Swine Fever Virus/physiology , African Swine Fever/epidemiology , African Swine Fever/virology , Africa South of the Sahara/epidemiology , Animals , Disease Outbreaks/veterinary , Genomics , Genotype , Phylogeny , Sus scrofa , Swine , Vaccine Development
10.
Vet Sci ; 8(9)2021 Sep 02.
Article in English | MEDLINE | ID: mdl-34564574

ABSTRACT

Swine leukocyte antigen (SLA) plays a central role in controlling the immune response by discriminating self and foreign antigens and initiating an immune response. Studies on SLA polymorphism have demonstrated associations between SLA allelic variants, immune response, and disease resistance. The SLA polymorphism is due to host-pathogen co-evolution resulting in improved adaptation to diverse environments making SLA a crucial genomic region for comparative diversity studies. Although locally-adapted African pigs have small body sizes, they possess increased resilience under harsh environmental conditions and robust immune systems with reported tolerance to some diseases, including African swine fever. However, data on the SLA diversity in these pigs are not available. We characterized the SLA of unrelated locally-adapted domestic pigs from Homa Bay, Kenya, alongside exotic pigs and warthogs. We undertook SLA comparative diversity of the functionally expressed SLA class I (SLA-1, SLA-2) and II (DQB1) repertoires in these three suids using the reverse transcription polymerase chain reaction (RT-PCR) sequence-based typing (SBT) method. Our data revealed higher genetic diversity in the locally-adapted pigs and warthogs compared to the exotic pigs. The nucleotide substitution rates were higher in the peptide-binding regions of the SLA-1, SLA-2, and DQB1 loci, indicative of adaptive evolution. We obtained high allele frequencies in the three SLA loci, including some breed-specific private alleles, which could guide breeders to increase their frequency through selection if confirmed to be associated with enhanced resilience. Our study contributes to the growing body of knowledge on genetic diversity in free-ranging animal populations in their natural environment, availing the first DQB1 gene data from locally-adapted Kenyan pigs.

11.
Pediatr Infect Dis J ; 40(9S): S7-S17, 2021 09 01.
Article in English | MEDLINE | ID: mdl-34448740

ABSTRACT

BACKGROUND: Pneumonia remains the leading cause of death in young children globally. The changing epidemiology of pneumonia requires up-to-date data to guide both case management and prevention programs. The Gambia study site contributed a high child mortality, high pneumonia incidence, low HIV prevalence, Haemophilus influenzae type b and pneumococcal conjugate vaccines-vaccinated rural West African setting to the Pneumonia Etiology Research for Child Health (PERCH) Study. METHODS: The PERCH study was a 7-country case-control study of the etiology of hospitalized severe pneumonia in children 1-59 months of age in low and middle-income countries. Culture and nucleic acid detection methods were used to test nasopharyngeal/oropharyngeal swabs, blood, induced sputum and, in selected cases, lung or pleural fluid aspirates. Etiology was determined by integrating case and control data from multiple specimens using the PERCH integrated analysis based on Bayesian probabilistic methods. RESULTS: At The Gambia study site, 638 cases of World Health Organization-defined severe and very severe pneumonia (286 of which were chest radiograph [CXR]-positive and HIV-negative) and 654 age-frequency matched controls were enrolled. Viral causes predominated overall (viral 58% vs. bacterial 28%), and of CXR-positive cases respiratory syncytial virus (RSV) accounted for 37%, Streptococcus pneumoniae 13% and parainfluenza was responsible for 9%. Nevertheless, among very severe cases bacterial causes dominated (77% bacterial vs. 11% viral), led by S. pneumoniae (41%); Mycobacterium tuberculosis, not included in "bacterial", accounted for 9%. 93% and 80% of controls ≥1 year of age were, respectively, fully vaccinated for age against Haemophilus influenzae and S. pneumoniae. CONCLUSIONS: Viral causes, notably RSV, predominated in The Gambia overall, but bacterial causes dominated the severest cases. Efforts must continue to prevent disease by optimizing access to existing vaccines, and to develop new vaccines, notably against RSV. A continued emphasis on appropriate case management of severe pneumonia remains important.


Subject(s)
Pneumonia/etiology , Bayes Theorem , Case-Control Studies , Child Health , Child, Preschool , Developing Countries , Female , Gambia/epidemiology , Haemophilus Vaccines , Hospitalization , Humans , Incidence , Infant , Logistic Models , Male , Patient Acuity , Pneumococcal Vaccines , Pneumonia/diagnosis , Pneumonia/epidemiology , Pneumonia/prevention & control , Risk Factors
12.
Sci Rep ; 11(1): 13081, 2021 06 22.
Article in English | MEDLINE | ID: mdl-34158551

ABSTRACT

African swine fever (ASF) caused by the African swine fever virus (ASFV) is ranked by OIE as the most important source of mortality in domestic pigs globally and is indigenous to African wild suids and soft ticks. Despite two ASFV genotypes causing economically devastating epidemics outside the continent since 1961, there have been no genome-level analyses of virus evolution in Africa. The virus was recently transported from south-eastern Africa to Georgia in 2007 and has subsequently spread to Russia, eastern Europe, China, and south-east Asia with devastating socioeconomic consequences. To date, two of the 24 currently described ASFV genotypes defined by sequencing of the p72 gene, namely genotype I and II, have been reported outside Africa, with genotype II being responsible for the ongoing pig pandemic. Multiple complete genotype II genome sequences have been reported from European, Russian and Chinese virus isolates but no complete genome sequences have yet been reported from Africa. We report herein the complete genome of a Tanzanian genotype II isolate, Tanzania/Rukwa/2017/1, collected in 2017 and determined using an Illumina short read strategy. The Tanzania/Rukwa/2017/1 sequence is 183,186 bp in length (in a single contig) and contains 188 open reading frames. Considering only un-gapped sites in the pairwise alignments, the new sequence has 99.961% identity with the updated Georgia 2007/1 reference isolate (FR682468.2), 99.960% identity with Polish isolate Pol16_29413_o23 (MG939586) and 99.957% identity with Chinese isolate ASFV-wbBS01 (MK645909.1). This represents 73 single nucleotide polymorphisms (SNPs) relative to the Polish isolate and 78 SNPs with the Chinese genome. Phylogenetic analysis indicated that Tanzania/Rukwa/2017/1 clusters most closely with Georgia 2007/1. The majority of the differences between Tanzania/Rukwa/2017/1 and Georgia 2007/1 genotype II genomes are insertions/deletions (indels) as is typical for ASFV. The indels included differences in the length and copy number of the terminal multicopy gene families, MGF 360 and 110. The Rukwa2017/1 sequence is the first complete genotype II genome from a precisely mapped locality in Africa, since the exact origin of Georgia2007/1 is unknown. It therefore provides baseline information for future analyses of the diversity and phylogeography of this globally important genetic sub-group of ASF viruses.


Subject(s)
African Swine Fever Virus/genetics , African Swine Fever/epidemiology , African Swine Fever/genetics , Africa/epidemiology , African Swine Fever/virology , Animals , DNA, Viral/genetics , Disease Outbreaks/veterinary , Europe/epidemiology , Genome, Viral/genetics , Genotype , High-Throughput Nucleotide Sequencing/methods , Pandemics/veterinary , Phylogeny , Sequence Analysis, DNA/methods , Sus scrofa/genetics , Swine , Whole Genome Sequencing/methods
13.
Sci Rep ; 11(1): 8881, 2021 04 23.
Article in English | MEDLINE | ID: mdl-33893352

ABSTRACT

Brucellosis, caused by several species of the genus Brucella, is a zoonotic disease that affects humans and animal species worldwide. Information on the Brucella species circulating in different hosts in Kenya is largely unknown, thus limiting the adoption of targeted control strategies. This study was conducted in multi-host livestock populations in Kenya to detect the circulating Brucella species and assess evidence of host-pathogen associations. Serum samples were collected from 228 cattle, 162 goats, 158 sheep, 49 camels, and 257 humans from Narok and Marsabit counties in Kenya. Information on age, location and history of abortion or retained placenta were obtained for sampled livestock. Data on age, gender and location of residence were also collected for human participants. All samples were tested using genus level real-time PCR assays with primers specific for IS711 and bcsp31 targets for the detection of Brucella. All genus positive samples (positive for both targets) were further tested with a speciation assay for AlkB and BMEI1162 targets, specific for B. abortus and B. melitensis, respectively. Samples with adequate quantities aggregating to 577 were also tested with the Rose Bengal Test (RBT). A total of 199 (33.3%) livestock and 99 (38.5%) human samples tested positive for genus Brucella. Animal Brucella PCR positive status was positively predicted by RBT positive results (OR = 8.3, 95% CI 4.0-17.1). Humans aged 21-40 years had higher odds (OR = 2.8, 95% CI 1.2-6.6) of being Brucella PCR positive compared to the other age categories. The data on detection of different Brucella species indicates that B. abortus was detected more often in cattle (OR = 2.3, 95% CI 1.1-4.6) and camels (OR = 2.9, 95% CI 1.3-6.3), while B. melitensis was detected more in sheep (OR = 3.6, 95% CI 2.0-6.7) and goats (OR = 1.7, 95% CI 1.0-3.1). Both B. abortus and B. melitensis DNA were detected in humans and in multiple livestock host species, suggesting cross-transmission of these species among the different hosts. The detection of these two zoonotic Brucella species in humans further underpins the importance of One Health prevention strategies that target multiple host species, especially in the multi-host livestock populations.


Subject(s)
Brucella/genetics , Brucellosis/epidemiology , Host-Pathogen Interactions , Livestock , Adult , Animals , Brucellosis/microbiology , Ecosystem , Female , Humans , Kenya/epidemiology , Male , Molecular Epidemiology , Young Adult
14.
Virol J ; 18(1): 23, 2021 01 21.
Article in English | MEDLINE | ID: mdl-33478547

ABSTRACT

BACKGROUND: African swine fever (ASF), a highly contagious hemorrhagic disease, affects domestic pigs in the Democratic Republic of Congo (DRC) where regular outbreaks are reported leading to high mortality rates approaching 100% in the affected regions. No study on the characteristics of the complete genome of strains responsible for ASF outbreaks in the South Kivu province of DRC is available, limited a better understanding of molecular evolution and spread of this virus within the country. The present study aimed at determining the complete genome sequence of ASFV strains genotype X involved in 2018-2019 ASF disease outbreaks in South Kivu province of DRC. MATERIALS AND METHODS: Genomic DNA of a spleen sample from an ASFV genotype X-positive domestic pig in Uvira, during the 2018-2019 outbreaks in South Kivu, was sequenced using the Illumina HiSeq X platform. Obtained trimmed reads using Geneious Prime 2020.0.4 were blasted against a pig reference genome then contigs were generated from the unmapped reads enriched in ASFV DNA using Spades implemented in Geneious 2020.0.4. The assembly of the complete genome sequence of ASFV was achieved from the longest overlapping contigs. The new genome was annotated with the genome annotation transfer utility (GATU) software and the CLC Genomics Workbench 8 software was further used to search for any ORFs that failed to be identified by GATU. Subsequent analyses of the newly determined Uvira ASFV genotype X genome were done using BLAST for databases search, CLUSTAL W for multiple sequences alignments and MEGA X for phylogeny. RESULTS: 42 Gbp paired-end reads of 150 bp long were obtained containing about 0.1% of ASFV DNA. The assembled Uvira ASFV genome, termed Uvira B53, was 180,916 bp long that could be assembled in 2 contigs. The Uvira B53genome had a GC content of 38.5%, encoded 168 open reading frames (ORFs) and had 98.8% nucleotide identity with the reference ASFV genotype X Kenya 1950. The phylogenetic relationship with selected representative genomes clustered the Uvira B53 strain together with ASFV genotype X reported to date (Kenya 1950 and Ken05/Tk1). Multiple genome sequences comparison with the two reference ASFV genotype X strains showed that 130 of the 168 ORFs were fully conserved in the Uvira B53. The other 38 ORFs were divergent mainly due to SNPs and indels (deletions and insertions). Most of 46 multigene family (MGF) genes identified were affected by various genetic variations. However, 8 MGF ORFs present in Kenya 1950 and Ken05/Tk1 were absent from the Uvira B53 genome including three members of MGF 360, four of MGF 110 and one of MGF 100 while one MGF ORF (MGF 360-1L) at the left end of the genome was truncated in Uvira B53. Moreover, ORFs DP96R and p285L were also absent in the Uvira B53 genome. In contrast, the ORF MGF 110-5L present in Uvira B53 and Ken05/Tk1 was missing in Kenya 1950. The analysis of the intergenic region between the I73R and I329L genes also revealed sequence variations between the three genotype X strains mainly characterized by a deletion of 69 bp in Uvira B53 and 36 bp in Kenya 1950, compared to Ken05/Tk1. Assessment of the CD2v (EP402R) antigen unveiled the presence of SNPs and indels particularly in the PPPKPY tandem repeat region between selected variants representing the eight serogroups reported to date. Uvira B53 had identical CD2v variable region to the Uganda (KM609361) strain, the only other ASFV serogroup 7 reported to date. CONCLUSION: We report the first complete genome sequence of an African swine fever virus (ASFV) p72 genotype X and CD2v serogroup 7, termed Uvira B53. This study provides additional insights on genetic characteristics and evolution of ASFV useful for tracing the geographical spread of ASF and essential for improved design of control and management strategies against ASF.


Subject(s)
African Swine Fever Virus/genetics , African Swine Fever/virology , Genome, Viral , Genotype , Sus scrofa/virology , Whole Genome Sequencing , African Swine Fever/epidemiology , African Swine Fever Virus/classification , Animals , DNA, Viral/genetics , Democratic Republic of the Congo , High-Throughput Nucleotide Sequencing , Phylogeny , Sequence Analysis, DNA , Serogroup , Swine , Viral Proteins/genetics
15.
Virol J ; 18(1): 2, 2021 01 06.
Article in English | MEDLINE | ID: mdl-33407584

ABSTRACT

BACKGROUND: Tomato production is threatened worldwide by the occurrence of begomoviruses which are associated with tomato leaf curl diseases. There is little information on the molecular properties of tomato begomoviruses in Kenya, hence we investigated the population and genetic diversity of begomoviruses associated with tomato leaf curl in Kenya. METHODS: Tomato leaf samples with virus-like symptoms were obtained from farmers' field across the country in 2018 and Illumina sequencing undertaken to determine the genetic diversity of associated begomoviruses. Additionally, the occurrence of selection pressure and recombinant isolates within the population were also evaluated. RESULTS: Twelve complete begomovirus genomes were obtained from our samples with an average coverage of 99.9%. The sequences showed 95.7-99.7% identity among each other and 95.9-98.9% similarities with a Tomato leaf curl virus Arusha virus (ToLCArV) isolate from Tanzania. Analysis of amino acid sequences showed the highest identities in the regions coding for the coat protein gene (98.5-100%) within the isolates, and 97.1-100% identity with the C4 gene of ToLCArV. Phylogenetic algorithms clustered all Kenyan isolates in the same clades with ToLCArV, thus confirming the isolates to be a variant of the virus. There was no evidence of recombination within our isolates. Estimation of selection pressure within the virus population revealed the occurrence of negative or purifying selection in five out of the six coding regions of the sequences. CONCLUSIONS: The begomovirus associated with tomato leaf curl diseases of tomato in Kenya is a variant of ToLCArV, possibly originating from Tanzania. There is low genetic diversity within the virus population and this information is useful in the development of appropriate management strategies for the disease in the country.


Subject(s)
Begomovirus/genetics , Plant Diseases/virology , Solanum lycopersicum/virology , Begomovirus/classification , Begomovirus/isolation & purification , DNA, Viral/genetics , Genetic Variation , Genome, Viral/genetics , Kenya , Metagenomics , Phylogeny , Plant Leaves/virology , Recombination, Genetic , Selection, Genetic , Sequence Analysis, DNA , Viral Proteins/genetics
16.
Parasit Vectors ; 14(1): 6, 2021 Jan 05.
Article in English | MEDLINE | ID: mdl-33402225

ABSTRACT

BACKGROUND: Tick-borne diseases (TBDs) constitute a major constraint for livestock development in sub-Saharan Africa, with East Coast fever (ECF) being the most devastating TBD of cattle. However, in Burundi, detailed information is lacking on the current prevalence of TBDs and on the associated economic losses from mortality and morbidity in cattle as well as the costs associated with TBD control and treatment. The aim of this study was, therefore, to assess the prevalence and spatial distribution of tick-borne pathogens (TBPs) in cattle across the major agro-ecological zones (AEZs) in Burundi. METHODS: In a cross-sectional study conducted in ten communes spanning the five main AEZs in Burundi, blood samples were taken from 828 cattle from 305 farms between October and December 2017. Evidence of Theileria parva infection was assessed by antibody level, measured using a polymorphic immunodominant molecule (PIM) antigen-based enzyme-linked immunosorbent assay (ELISA) and by a T. parva-specific p104 gene-based nested PCR. Antibodies against Theileria mutans infection were detected using the 32-kDa antigen-based indirect ELISA, while the 200-kDa antigen and the major surface protein 5 (MSP5)-based indirect ELISA were used to detect antibodies against Babesia bigemina and Anaplasma marginale, respectively. RESULTS: The prevalence of T. parva across the ten communes sampled ranged from 77.5 to 93.1% and from 67.8 to 90.0% based on the ELISA and PCR analysis, respectively. A statistically significant difference in infection was observed between calves and adult cattle; however, T. parva infection levels were not significantly associated with sex and breed. The seroprevalence indicating exposure to T. mutans, B. bigemina and A. marginale ranged from 30 to 92.1%, 33.7 to 90% and 50 to 96.2%, respectively. Mixed infections of TBPs were detected in 82.91% of cattle sampled, with 11 different combinations of pathogen species detected . CONCLUSIONS: The findings indicate that T. parva, A. marginale and B. bigemina infections are endemic in Burundi. Knowledge of the spatial distribution of TBPs will facilitate the design of effective targeted strategies to control these diseases. There is a need for further investigations of the distribution of tick vectors and the population structure of TBPs in order to identify the key epidemiological factors contributing to TBD outbreaks in Burundi.


Subject(s)
Anaplasmosis/epidemiology , Babesiosis/epidemiology , Cattle Diseases/epidemiology , Theileriasis/epidemiology , Tick-Borne Diseases/epidemiology , Ticks/parasitology , Anaplasma marginale/immunology , Anaplasmosis/transmission , Animal Distribution , Animals , Antibodies, Protozoan/blood , Babesia/immunology , Babesiosis/transmission , Burundi/epidemiology , Cattle , Cattle Diseases/parasitology , Cattle Diseases/transmission , Cross-Sectional Studies , Endemic Diseases , Female , Male , Prevalence , Seroepidemiologic Studies , Theileria parva/immunology , Theileriasis/immunology , Theileriasis/transmission , Tick-Borne Diseases/transmission
17.
Transbound Emerg Dis ; 68(2): 813-823, 2021 Mar.
Article in English | MEDLINE | ID: mdl-32696552

ABSTRACT

African swine fever (ASF) is a severe haemorrhagic disease of domestic pigs caused by ASF virus (ASFV). ASFV is transmitted by soft ticks (Ornithodoros moubata complex group) and by direct transmission. In Africa, ASF is maintained in transmission cycles of asymptomatic infection involving wild suids, mainly warthogs (Phacochoerus africanus). ASF outbreaks have been reported in many parts of Tanzania; however, active surveillance has been limited to pig farms in a few geographical locations. There is an information gap on whether and where the sylvatic cycle may occur independently of domestic pigs. To explore the existence of a sylvatic cycle in Saadani National Park in Tanzania, blood and serum samples were collected from 19 warthogs selected using convenience sampling along vehicle-accessible transects within the national park. The ticks were sampled from warthog burrows. Blood samples and ticks were subjected to ASFV molecular diagnosis (PCR) and genotyping, and warthog sera were subjected to serological (indirect ELISA) testing for ASFV antibody detection. All warthog blood samples were PCR-negative, but 16/19 (84%) of the warthog sera were seropositive by ELISA confirming exposure of warthogs to ASFV. Of the ticks sampled, 20/111 (18%) were positive for ASFV by conventional PCR. Sequencing of the p72 virus gene fragments showed that ASF viruses detected in ticks belonged to genotype XV. The results confirm the existence of a sylvatic cycle of ASFV in Saadani National Park, Tanzania, that involves ticks and warthogs independent of domestic pigs. Our findings suggest that genotype XV previously reported in 2008 in Tanzania is likely to be widely distributed and involved in both wild and domestic infection cycles. Whole-genome sequencing and analysis of the ASFV genotype XV circulating in Tanzania is recommended to determine the phylogeny of the viruses.


Subject(s)
African Swine Fever Virus/genetics , African Swine Fever/virology , African Swine Fever/epidemiology , Animals , Asymptomatic Infections/epidemiology , Disease Outbreaks/veterinary , Genotype , Ornithodoros/virology , Phylogeny , Polymerase Chain Reaction/veterinary , Swine , Tanzania/epidemiology , Tick Infestations/epidemiology , Tick Infestations/veterinary
18.
Viruses ; 12(11)2020 11 05.
Article in English | MEDLINE | ID: mdl-33167568

ABSTRACT

Astroviruses (AstVs) are widely distributed and are associated with gastroenteritis in human and animals. The knowledge of the genetic diversity and epidemiology of AstVs in Africa is limited. This study aimed to characterize astroviruses in asymptomatic smallholder piglets in Kenya and Uganda. Twenty-four samples were randomly selected from a total of 446 piglets aged below 6 months that were initially collected for rotavirus study and sequenced for whole genome analysis. Thirteen (13/24) samples had contigs with high identity to genus Mamastrovirus. Analysis of seven strains with complete (or near complete) AstV genome revealed variable nucleotide and amino acid sequence identities with known porcine astrovirus (PoAstV) strains. The U083 and K321 strains had nucleotide sequence identities ranging from 66.4 to 75.4% with the known PoAstV2 strains; U460 strain had nucleotide sequence identities of 57.0 to 65.1% regarding the known PoAstV3; and K062, K366, K451, and K456 strains had nucleotide sequence identities of 63.5 to 80% with the known PoAstV4 strains. The low sequence identities (<90%) indicate that novel genotypes of PoAstVs are circulating in the study area. Recombination analysis using whole genomes revealed evidence of multiple recombination events in PoAstV4, suggesting that recombination might have contributed to the observed genetic diversity. Linear antigen epitope prediction and a comparative analysis of capsid protein of our field strains identified potential candidate epitopes that could help in the design of immuno-diagnostic tools and a subunit vaccine. These findings provide new insights into the molecular epidemiology of porcine astroviruses in East Africa.


Subject(s)
Astroviridae Infections/veterinary , Genetic Variation , Mamastrovirus/genetics , Swine Diseases/virology , Whole Genome Sequencing , Animals , Astroviridae Infections/epidemiology , Farms , Feces/virology , Genome, Viral , Genotype , Kenya/epidemiology , Livestock/virology , Phylogeny , Sequence Analysis , Swine , Swine Diseases/epidemiology , Uganda/epidemiology
19.
PLoS One ; 15(10): e0239122, 2020.
Article in English | MEDLINE | ID: mdl-33031381

ABSTRACT

Cowpea [Vigna unguiculata (L.) Walp] is one of the important climate-resilient legume crops for food and nutrition security in sub-Saharan Africa. Ethiopia is believed to harbor high cowpea genetic diversity, but this has not yet been efficiently characterized and exploited in breeding. The objective of this study was to evaluate the extent and pattern of genetic diversity in 357 cowpea accestions comprising landraces (87%), breeding lines (11%) and released varieties (2%), using single nucleotide polymorphism markers. The overall gene diversity and heterozygosity were 0.28 and 0.12, respectively. The genetic diversity indices indicated substantial diversity in Ethiopian cowpea landraces. Analysis of molecular variance showed that most of the variation was within in the population (46%) and 44% between individuals, with only 10% of the variation being among populations. Model-based ancestry analysis, the phylogenetic tree, discriminant analysis of principal components and principal coordinate analysis classified the 357 genotypes into three well-differentiated genetic populations. Genotypes from the same region grouped into different clusters, while others from different regions fell into the same cluster. This indicates that differences in regions of origin may not be the main driver determining the genetic diversity in cowpea in Ethiopia. Therefore, differences in sources of origin, as currently distributed in Ethiopia, should not necessarily be used as indices of genetic diversity. Choice of parental lines should rather be based on a systematic assessment of genetic diversity in a specific population. The study also suggested 94 accesstions as core collection which retained 100% of the genetic diversity from the entire collection. This core set represents 26% of the entire collection pinpointing a wide distribution of the diversity within the ethiopian landraces. The outcome of this study provided new insights into the genetic diversity and population structure in Ethiopian cowpea genetic resources for designing effective collection and conservation strategies for efficient utilization in breeding.


Subject(s)
Vigna/genetics , Crops, Agricultural/genetics , DNA, Plant/genetics , Ethiopia , Genetic Markers , Genetic Variation , Phylogeny , Phylogeography , Plant Breeding , Polymorphism, Single Nucleotide , Vigna/classification
20.
Virol J ; 17(1): 135, 2020 09 03.
Article in English | MEDLINE | ID: mdl-32883295

ABSTRACT

BACKGROUND: African swine fever (ASF) is a highly contagious and severe hemorrhagic viral disease of domestic pigs. The analysis of variable regions of African swine fever virus (ASFV) genome led to more genotypic and serotypic information about circulating strains. The present study aimed at investigating the genetic diversity of ASFV strains in symptomatic pigs in South Kivu province of the Democratic Republic of Congo (DRC). MATERIALS AND METHODS: Blood samples collected from 391 ASF symptomatic domestic pigs in 6 of 8 districts in South Kivu were screened for the presence of ASFV, using a VP73 gene-specific polymerase chain reaction (PCR) with the universal primer set PPA1-PPA2. To genotype the strains, we sequenced and compared the nucleotide sequences of PPA-positive samples at three loci: the C-terminus of B646L gene encoding the p72 protein, the E183L gene encoding the p54 protein, and the central hypervariable region (CVR) of the B602L gene encoding the J9L protein. In addition, to serotype and discriminate between closely related strains, the EP402L (CD2v) gene and the intergenic region between the I73R and I329L genes were analyzed. RESULTS: ASFV was confirmed in 26 of 391 pigs tested. However, only 19 and 15 PPA-positive samples, respectively, were successfully sequenced and phylogenetically analyzed for p72 (B646L) and p54 (E183L). All the ASFV studied were of genotype X. The CVR tetrameric repeat clustered the ASFV strains in two subgroups: the Uvira subgroup (10 TRS repeats, AAAABNAABA) and another subgroup from all other strains (8 TRS repeats, AABNAABA). The phylogenetic analysis of the EP402L gene clustered all the strains into CD2v serogroup 7. Analyzing the intergenic region between I73R and I329L genes revealed that the strains were identical but contained a deletion of a 33-nucleotide internal repeat sequence compared to ASFV strain Kenya 1950. CONCLUSION: ASFV genotype X and serogroup 7 was identified in the ASF disease outbreaks in South Kivu province of DRC in 2018-2019. This represents the first report of ASFV genotype X in DRC. CVR tetrameric repeat sequences clustered the ASFV strains studied in two subgroups. Our finding emphasizes the need for improved coordination of the control of ASF.


Subject(s)
African Swine Fever Virus/genetics , African Swine Fever Virus/isolation & purification , African Swine Fever/virology , African Swine Fever/epidemiology , African Swine Fever Virus/classification , Animals , Base Sequence , DNA, Viral/genetics , Democratic Republic of the Congo/epidemiology , Disease Outbreaks , Genotype , Phylogeny , Sequence Analysis, DNA , Serogroup , Sus scrofa/virology , Swine , Viral Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...