Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Comput Med Imaging Graph ; 116: 102401, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38795690

ABSTRACT

Metastatic brain cancer is a condition characterized by the migration of cancer cells to the brain from extracranial sites. Notably, metastatic brain tumors surpass primary brain tumors in prevalence by a significant factor, they exhibit an aggressive growth potential and have the capacity to spread across diverse cerebral locations simultaneously. Magnetic resonance imaging (MRI) scans of individuals afflicted with metastatic brain tumors unveil a wide spectrum of characteristics. These lesions vary in size and quantity, spanning from tiny nodules to substantial masses captured within MRI. Patients may present with a limited number of lesions or an extensive burden of hundreds of them. Moreover, longitudinal studies may depict surgical resection cavities, as well as areas of necrosis or edema. Thus, the manual analysis of such MRI scans is difficult, user-dependent and cost-inefficient, and - importantly - it lacks reproducibility. We address these challenges and propose a pipeline for detecting and analyzing brain metastases in longitudinal studies, which benefits from an ensemble of various deep learning architectures originally designed for different downstream tasks (detection and segmentation). The experiments, performed over 275 multi-modal MRI scans of 87 patients acquired in 53 sites, coupled with rigorously validated manual annotations, revealed that our pipeline, built upon open-source tools to ensure its reproducibility, offers high-quality detection, and allows for precisely tracking the disease progression. To objectively quantify the generalizability of models, we introduce a new data stratification approach that accommodates the heterogeneity of the dataset and is used to elaborate training-test splits in a data-robust manner, alongside a new set of quality metrics to objectively assess algorithms. Our system provides a fully automatic and quantitative approach that may support physicians in a laborious process of disease progression tracking and evaluation of treatment efficacy.

2.
Comput Biol Med ; 154: 106603, 2023 03.
Article in English | MEDLINE | ID: mdl-36738710

ABSTRACT

Tumor burden assessment by magnetic resonance imaging (MRI) is central to the evaluation of treatment response for glioblastoma. This assessment is, however, complex to perform and associated with high variability due to the high heterogeneity and complexity of the disease. In this work, we tackle this issue and propose a deep learning pipeline for the fully automated end-to-end analysis of glioblastoma patients. Our approach simultaneously identifies tumor sub-regions, including the enhancing tumor, peritumoral edema and surgical cavity in the first step, and then calculates the volumetric and bidimensional measurements that follow the current Response Assessment in Neuro-Oncology (RANO) criteria. Also, we introduce a rigorous manual annotation process which was followed to delineate the tumor sub-regions by the human experts, and to capture their segmentation confidences that are later used while training deep learning models. The results of our extensive experimental study performed over 760 pre-operative and 504 post-operative adult patients with glioma obtained from the public database (acquired at 19 sites in years 2021-2020) and from a clinical treatment trial (47 and 69 sites for pre-/post-operative patients, 2009-2011) and backed up with thorough quantitative, qualitative and statistical analysis revealed that our pipeline performs accurate segmentation of pre- and post-operative MRIs in a fraction of the manual delineation time (up to 20 times faster than humans). Volumetric measurements were in strong agreement with experts with the Intraclass Correlation Coefficient (ICC): 0.959, 0.703, 0.960 for ET, ED, and cavity. Similarly, automated RANO compared favorably with experienced readers (ICC: 0.681 and 0.866) producing consistent and accurate results. Additionally, we showed that RANO measurements are not always sufficient to quantify tumor burden. The high performance of the automated tumor burden measurement highlights the potential of the tool for considerably improving and simplifying radiological evaluation of glioblastoma in clinical trials and clinical practice.


Subject(s)
Brain Neoplasms , Deep Learning , Glioblastoma , Adult , Humans , Glioblastoma/diagnostic imaging , Glioblastoma/surgery , Glioblastoma/pathology , Brain Neoplasms/diagnostic imaging , Brain Neoplasms/surgery , Tumor Burden , Magnetic Resonance Imaging/methods
3.
Comput Biol Med ; 152: 106378, 2023 01.
Article in English | MEDLINE | ID: mdl-36512877

ABSTRACT

Hepatic cirrhosis is an increasing cause of mortality in developed countries-it is the pathological sequela of chronic liver diseases, and the final liver fibrosis stage. Since cirrhosis evolves from the asymptomatic phase, it is of paramount importance to detect it as quickly as possible, because entering the symptomatic phase commonly leads to hospitalization and can be fatal. Understanding the state of the liver based on the abdominal computed tomography (CT) scans is tedious, user-dependent and lacks reproducibility. We tackle these issues and propose an end-to-end and reproducible approach for detecting cirrhosis from CT. It benefits from the introduced clinically-inspired features that reflect the patient's characteristics which are often investigated by experienced radiologists during the screening process. Such features are coupled with the radiomic ones extracted from the liver, and from the suggested region of interest which captures the liver's boundary. The rigorous experiments, performed over two heterogeneous clinical datasets (two cohorts of 241 and 32 patients) revealed that extracting radiomic features from the liver's rectified contour is pivotal to enhance the classification abilities of the supervised learners. Also, capturing clinically-inspired image features significantly improved the performance of such models, and the proposed features were consistently selected as the important ones. Finally, we showed that selecting the most discriminative features leads to the Pareto-optimal models with enhanced feature-level interpretability, as the number of features was dramatically reduced (280×) from thousands to tens.


Subject(s)
Liver Cirrhosis , Tomography, X-Ray Computed , Humans , Reproducibility of Results , Tomography, X-Ray Computed/methods , Liver Cirrhosis/diagnostic imaging , Abdomen , Retrospective Studies
4.
Artif Intell Med ; 102: 101769, 2020 01.
Article in English | MEDLINE | ID: mdl-31980106

ABSTRACT

Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) plays an important role in diagnosis and grading of brain tumors. Although manual DCE biomarker extraction algorithms boost the diagnostic yield of DCE-MRI by providing quantitative information on tumor prognosis and prediction, they are time-consuming and prone to human errors. In this paper, we propose a fully-automated, end-to-end system for DCE-MRI analysis of brain tumors. Our deep learning-powered technique does not require any user interaction, it yields reproducible results, and it is rigorously validated against benchmark and clinical data. Also, we introduce a cubic model of the vascular input function used for pharmacokinetic modeling which significantly decreases the fitting error when compared with the state of the art, alongside a real-time algorithm for determination of the vascular input region. An extensive experimental study, backed up with statistical tests, showed that our system delivers state-of-the-art results while requiring less than 3 min to process an entire input DCE-MRI study using a single GPU.


Subject(s)
Brain Neoplasms/diagnostic imaging , Contrast Media , Deep Learning , Magnetic Resonance Imaging/methods , Algorithms , Automation , Brain Neoplasms/blood supply , Contrast Media/pharmacokinetics , Databases, Factual , Humans , Phantoms, Imaging , Pharmacokinetics , Prognosis , Regional Blood Flow , Reproducibility of Results , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...