Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Signal ; 17(4): 489-96, 2005 Apr.
Article in English | MEDLINE | ID: mdl-15601626

ABSTRACT

Neuropeptide Y (NPY) has several receptors; one of them, the neuropeptide Y5 receptor (NPY5) seems involved in feeding behavior in mammals. Although this particular receptor has been extensively studied in the literature, the difficulties encountered to obtain a stable cell line expressing this recombinant receptor have impaired the development of tools necessary to establish its molecular pharmacology. We thus established a method for the functional study of new ligands. It is based upon the cotransfection in human melatonin receptor 1 (MT1)-overexpressing HEK293 cells of three plasmids encoding melanocortin receptor (MC5), neuropeptide Y5 receptor (NPY5) and a cyclic AMP response element-controlled luciferase. Once challenged with alphaMSH, the MC5 receptor activates the cyclic AMP response, through the coupling protein subunit G(s). In contrast, NPY5 agonists, through the NPY5 receptor which is negatively coupled to the same pathway, counteract the alphaMSH-mediated effect on cyclic AMP level. Using appropriate controls, this method can pinpoint compounds with antagonistic activity. Simple and straightforward, this system permits reproducible measurements of agonist or antagonist effects in the presence of neuropeptide Y, the natural agonist. This method has the advantage over already existing methods and beyond its apparent complexity, to enhance the cyclic AMP concentration at a 'physiological' level, by opposition to a forskolin-induced adenylate cyclase activation. Finally, to further validate this assay, we showed results from (1) a series of natural peptidic agonists that permitted the standardization and (2) a series of potent nonpeptidic antagonists (affinity >10(-9) M) that form a new class of active NPY5 receptor antagonists.


Subject(s)
Genes, Reporter , Luciferases/genetics , Receptors, Neuropeptide Y/antagonists & inhibitors , Biological Assay , Humans , Ligands , Neuropeptide Y/pharmacology , Peptides/chemistry , Peptides/metabolism , Peptides/pharmacology , Receptors, Neuropeptide Y/genetics , Receptors, Neuropeptide Y/metabolism , Recombinant Proteins/antagonists & inhibitors , Recombinant Proteins/genetics , Recombinant Proteins/metabolism
2.
Biochem J ; 369(Pt 3): 667-73, 2003 Feb 01.
Article in English | MEDLINE | ID: mdl-12398768

ABSTRACT

The neuropeptide Y Y5 receptor gene generates two splice variants, referred to here as Y5(L) (long isoform) and Y5(S) (short isoform). Y5(L) mRNA differs from Y5(S) mRNA in its 5' end, generating a putative open reading frame with 30 additional nucleotides upstream of the initiator AUG compared with the Y5(S) mRNA. The purpose of the present work was to investigate the existence of the Y5(L) mRNA. The authenticity of this transcript was confirmed by isolating part of its 5' untranslated region through 5' rapid amplification of cDNA ends and analysing its tissue distribution. To study the initiation of translation on Y5(L) mRNA, we cloned the Y5(L) cDNA and two Y5(L) cDNA mutants lacking the first or the second putative initiation start codon. Transient expression of the three plasmids in COS-7 cells and saturation binding experiments using (125)I-labelled polypeptide YY (PYY) as a ligand showed that initiation of translation on Y5(L) mRNA could start at the first AUG, giving rise to a Y5(L) receptor with an N-terminal 10-amino-acid extension when compared with the Y5(S) receptor. The human Y5(L) and Y5(S) receptor isoforms displayed similar affinity constants (1.3 nM and 1.5 nM respectively). [(125)I]PYY binding to COS-7 cells expressing either the Y5(L) or the Y5(S) isoform was inhibited with the same rank order of potency by a selection of six chemically diverse compounds: PYY>neuropeptide Y>pancreatic polypeptide>CGP71683A>Synaptic 34>Banyu 6. Comparison of the tissue distribution of Y5(L) and Y5(S) mRNAs, as determined by reverse transcription-PCR analysis, indicated that expression of Y5(L) mRNA occurs in a tissue-specific manner. Finally, we have shown that the two AUG triplets contained in the 5' untranslated region of Y5(L) mRNA did not affect receptor expression.


Subject(s)
5' Untranslated Regions , Arginine/analogs & derivatives , Receptors, Neuropeptide Y/drug effects , Receptors, Neuropeptide Y/genetics , Alternative Splicing , Animals , Arginine/pharmacology , Base Sequence , Brain/metabolism , COS Cells/drug effects , Cloning, Molecular , Codon, Initiator , Humans , Molecular Sequence Data , Neuropeptide Y/metabolism , Neuropeptide Y/pharmacology , Protein Biosynthesis , Protein Isoforms/drug effects , Protein Isoforms/genetics , RNA, Messenger/metabolism , Receptors, Neuropeptide Y/antagonists & inhibitors , Receptors, Neuropeptide Y/metabolism , Transcription, Genetic , Trinucleotide Repeats/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...