Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 11(10): e0164365, 2016.
Article in English | MEDLINE | ID: mdl-27727329

ABSTRACT

ß-escin is a mixture of triterpene saponins isolated from the horse chestnut seeds (Aesculus hippocastanum L.). The anti-edematous, anti-inflammatory and venotonic properties of ß-escin have been the most extensively clinically investigated effects of this plant-based drug and randomized controlled trials have proved the efficacy of ß-escin for the treatment of chronic venous insufficiency. However, despite the clinical recognition of the drug its pharmacological mechanism of action still remains largely elusive. To determine the cellular and molecular basis for the therapeutic effectiveness of ß-escin we performed discovery and targeted proteomic analyses and in vitro evaluation of cellular and molecular responses in human endothelial cells under inflammatory conditions. Our results demonstrate that in endothelial cells ß-escin potently induces cholesterol synthesis which is rapidly followed with marked fall in actin cytoskeleton integrity. The concomitant changes in cell functioning result in a significantly diminished responses to TNF-α stimulation. These include reduced migration, alleviated endothelial monolayer permeability, and inhibition of NFκB signal transduction leading to down-expression of TNF-α-induced effector proteins. Moreover, the study provides evidence for novel therapeutic potential of ß-escin beyond the current vascular indications.


Subject(s)
Aesculus/chemistry , Cell Proliferation/drug effects , Escin/pharmacology , Actin Cytoskeleton/drug effects , Actin Cytoskeleton/metabolism , Aesculus/metabolism , Cell Movement/drug effects , Cell Survival/drug effects , Cholesterol/biosynthesis , Escin/chemistry , Human Umbilical Vein Endothelial Cells , Humans , NF-kappa B/metabolism , Permeability/drug effects , Proteome/analysis , Proteome/drug effects , Proteomics , Seeds/chemistry , Seeds/metabolism , Signal Transduction/drug effects , Tumor Necrosis Factor-alpha/pharmacology
2.
Genes (Basel) ; 7(9)2016 Sep 02.
Article in English | MEDLINE | ID: mdl-27598204

ABSTRACT

The article summarizes over 20 years of experience of a reference lab in fragile X mental retardation 1 gene (FMR1) molecular analysis in the molecular diagnosis of fragile X spectrum disorders. This includes fragile X syndrome (FXS), fragile X-associated primary ovarian insufficiency (FXPOI) and fragile X-associated tremor/ataxia syndrome (FXTAS), which are three different clinical conditions with the same molecular background. They are all associated with an expansion of CGG repeats in the 5'UTR of FMR1 gene. Until 2016, the FMR1 gene was tested in 9185 individuals with the pre-screening PCR, supplemented with Southern blot analysis and/or Triplet Repeat Primed PCR based method. This approach allowed us to confirm the diagnosis of FXS, FXPOI FXTAS in 636/9131 (6.96%), 4/43 (9.3%) and 3/11 (27.3%) of the studied cases, respectively. Moreover, the FXS carrier status was established in 389 individuals. The technical aspect of the molecular analysis is very important in diagnosis of FXS-related disorders. The new methods were subsequently implemented in our laboratory. This allowed the significance of the Southern blot technique to be decreased until its complete withdrawal. Our experience points out the necessity of implementation of the GeneScan based methods to simplify the testing procedure as well as to obtain more information for the patient, especially if TP-PCR based methods are used.

3.
PLoS One ; 10(7): e0133752, 2015.
Article in English | MEDLINE | ID: mdl-26217941

ABSTRACT

The Parkes Weber syndrome is a congenital vascular malformation, characterized by varicose veins, arterio-venous fistulas and overgrown limbs. No broadly accepted animal model of Parkes Weber syndrome has been described. We created side-to-side arterio-venous fistula between common femoral vessels with proximal non-absorbable ligature on common femoral vein limiting the enlargement of the vein diameter in Wistar rats. Contralateral limb was sham operated. Invasive blood pressure measurements in both iliac and inferior cava veins were performed in rats 30 days after fistula creation. Tight circumference and femoral bone length were measured. Histopathology and morphology of soleus muscle, extensor digitorum longus muscle, and the common femoral vessel were analyzed. 30 days following arterio-venous fistula creation, a statistically significant elevation of blood pressure in common iliac vein and limb overgrowth was observed. Limb enlargement was caused by muscle overgrowth, varicose veins formation and bone elongation. Arterio-venous fistula with proximal outflow limitation led to significant increase of femoral vein circumference and venous wall thickness. Our study indicates that the described rat model mimics major clinical features characteristic for the human Parkes Weber syndrome: presence of arterio-venous fistula, venous hypertension and dilatation, varicose veins formation, and the limb hypertrophy. We reveal that limb overgrowth is caused by bone elongation, muscle hypertrophy, and venous dilatation. The newly established model will permit detailed studies on the mechanisms underlying the disease and on the efficacy of novel therapeutic strategies for the Parkes Weber syndrome treatment.


Subject(s)
Arteriovenous Fistula/pathology , Disease Models, Animal , Femoral Vein/pathology , Leg/physiopathology , Sturge-Weber Syndrome/pathology , Varicose Veins/pathology , Animals , Blood Pressure , Humans , Male , Rats , Rats, Wistar
SELECTION OF CITATIONS
SEARCH DETAIL
...