Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
3 Biotech ; 13(11): 352, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37810191

ABSTRACT

The ineffectiveness of azole drugs in treating Vulvovaginal Candidiasis (VVC) and Recurrent Vulvovaginal Candidiasis (RVVC) due to antifungal resistance of non-albicans Candida has led to the investigation of inorganic nanoparticles with biological activity. Silver nanoparticles (AgNPs) are important in nanomedicine and have been used in various products and technologies. This study aimed to develop a vaginal cream and assess its in vitro antimicrobial activity against Candida parapsilosis strains, specifically focusing on the synergy between AgNPs and miconazole. AgNPs were synthesized using glucose as a reducing agent and sodium dodecyl sulfate (SDS) as a stabilizer in varying amounts (0.50, 0.25, and 0.10 g). The AgNPs were characterized using UV-Visible (UV-Vis) and Fourier-Transform Infrared (FT-IR) spectroscopies, X-Ray Diffraction (XRD), Dynamic Light Scattering (DLS), Scanning Electron Microscopy (SEM), and Energy Dispersive X-Ray Analysis (EDX). Fifty strains of Candida parapsilosis were used to evaluate the synergistic activity. AgNPs synthesized with 0.5 g SDS had an average size of 77.58 nm and a zeta potential of -49.2 mV, while AgNPs with 0.25 g showed 91.22 nm and -47.2 mV, respectively. AgNPs stabilized with 0.1 g of SDS were not effective. When combined with miconazole, AgNPs exhibited significant antifungal activity, resulting in an average increase of 80% in inhibition zones. The cream developed in this study, containing half the miconazole concentration of commercially available medication, demonstrated larger inhibition zones compared to the commercial samples.

2.
Rev Inst Med Trop Sao Paulo ; 58: 73, 2016 Sep 22.
Article in English | MEDLINE | ID: mdl-27680178

ABSTRACT

Nanotechnology can be a valuable ally in the treatment of infections. Silver nanoparticles (AgNPs) are structures that have antimicrobial activity. The aim of this study was to produce AgNPs by green methods, characterize these structures, and assess their antimicrobial activity against Escherichia coli associated with the antibiotic ciprofloxacin. AgNPs were characterized by spectroscopic and microscopic techniques. Antimicrobial activity was evaluated by the disk diffusion method against 10 strains of E. coli. The synthesized AgNPs showed a spherical shape and a size of 85.07 ± 12.86 nm (mean ± SD). AgNPs increased the activity of ciprofloxacin by 40% and may represent a new therapeutic option for the treatment of bacterial infections.

SELECTION OF CITATIONS
SEARCH DETAIL
...