Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Mem Inst Oswaldo Cruz ; 118: e220143, 2023.
Article in English | MEDLINE | ID: mdl-37466532

ABSTRACT

BACKGROUND: Culex quinquefasciatus, a cosmopolitan, domestic, and highly anthropophilic mosquito, is a vector of pathogenic arboviruses such as West Nile virus and Rift Valley virus, as well as lymphatic filariasis. The current knowledge on its reproductive physiology regarding vitellogenin expression in different tissues is still limited. OBJECTIVES: In this study, we analysed the transcriptional profiles of vitellogenin genes in the fat body and ovaries of C. quinquefasciatus females during the first gonotrophic cycle. METHODS: C. quinquefasciatus ovaries and/or fat bodies were dissected in different times during the first gonotrophic cycle and total RNA was extracted and used for reverse transcription polymerase chain reaction, quantitative real time-PCR, and in situ hybridisation. FINDINGS: We confirmed the classical descriptions of the vitellogenic process in mosquitoes by verifying that vitellogenin genes are transcribed in the fat bodies of C. quinquefasciatus females. Using RNA in situ hybridisation approach, we showed that vitellogenin genes are also transcribed in developing ovaries, specifically by the follicle cells. MAIN CONCLUSIONS: This is the first time that vitellogenin transcripts are observed in mosquito ovaries. Studies to determine if Vg transcripts are translated into proteins and their contribution to the reproductive success of the mosquito need to be further investigated.


Subject(s)
Culex , Culicidae , Animals , Female , Culex/genetics , Vitellogenins/genetics , Vitellogenins/metabolism , Ovary/metabolism , Mosquito Vectors/genetics , RNA/metabolism
2.
Mem. Inst. Oswaldo Cruz ; 118: e220143, 2023. tab, graf
Article in English | LILACS-Express | LILACS | ID: biblio-1448704

ABSTRACT

BACKGROUND Culex quinquefasciatus, a cosmopolitan, domestic, and highly anthropophilic mosquito, is a vector of pathogenic arboviruses such as West Nile virus and Rift Valley virus, as well as lymphatic filariasis. The current knowledge on its reproductive physiology regarding vitellogenin expression in different tissues is still limited. OBJECTIVES In this study, we analysed the transcriptional profiles of vitellogenin genes in the fat body and ovaries of C. quinquefasciatus females during the first gonotrophic cycle. METHODS C. quinquefasciatus ovaries and/or fat bodies were dissected in different times during the first gonotrophic cycle and total RNA was extracted and used for reverse transcription polymerase chain reaction, quantitative real time-PCR, and in situ hybridisation. FINDINGS We confirmed the classical descriptions of the vitellogenic process in mosquitoes by verifying that vitellogenin genes are transcribed in the fat bodies of C. quinquefasciatus females. Using RNA in situ hybridisation approach, we showed that vitellogenin genes are also transcribed in developing ovaries, specifically by the follicle cells. MAIN CONCLUSIONS This is the first time that vitellogenin transcripts are observed in mosquito ovaries. Studies to determine if Vg transcripts are translated into proteins and their contribution to the reproductive success of the mosquito need to be further investigated.

3.
PLoS One ; 11(5): e0155454, 2016.
Article in English | MEDLINE | ID: mdl-27203689

ABSTRACT

Classical studies have shown that Aedes aegypti salivary secretion is responsible for the sensitization to mosquito bites and many of the components present in saliva are immunogenic and capable of inducing an intense immune response. Therefore, we have characterized a murine model of adjuvant-free systemic allergy induced by natural exposure to mosquito bites. BALB/c mice were sensitized by exposure to A. aegypti mosquito bites and intranasally challenged with phosphate-buffered saline only or the mosquito's salivary gland extract (SGE). Blood, bronchoalveolar lavage (BAL) and lung were collected and evaluated for cellularity, histopathological analyses, cytokines and antibody determination. Respiratory pattern was analyzed by Penh measurements and tracheal segments were obtained to study in vitro reactivity to methacholine. BAL recovered from sensitized mice following challenge with SGE showed an increased number of eosinophils and Th2 cytokines such as IL-4, IL-5 and IL-13. Peribronchoalveolar eosinophil infiltration, mucus and collagen were also observed in lung parenchyma of sensitized mice, suggesting the development of a typical Th2 response. However, the antibody profile in serum of these mice evidenced a mixed-type response with presence of both, IgG1/IgE (Th2-related) and IgG2a (Th1-related) isotypes. In addition, changes in breathing pattern and tracheal reactivity to methacholine were not found. Taken together, our results show that A. aegypti bites trigger an atypical allergic reaction, with some classical cellular and soluble Th2 components in the lung, but also systemic Th1 and Th2 antibody isotypes and no change in either the respiratory pattern or the trachea responsiveness to agonist.


Subject(s)
Aedes/immunology , Hypersensitivity/immunology , Insect Bites and Stings/immunology , Salivary Glands/immunology , Allergens/immunology , Animals , Antibodies/metabolism , Cytokines/metabolism , Female , Flow Cytometry , Interferon-gamma/metabolism , Interleukin-10/metabolism , Interleukin-4/metabolism , Interleukin-5/metabolism , Male , Mice , Mice, Inbred BALB C
4.
Malar J ; 15: 153, 2016 Mar 10.
Article in English | MEDLINE | ID: mdl-26964736

ABSTRACT

BACKGROUND: The circumsporozoite protein is the most abundant polypeptide expressed by sporozoites, the malaria parasite stage capable of infecting humans. Sporozoite invasion of mosquito salivary glands prior to transmission is likely mediated by a receptor/ligand-like interaction of the parasites with the target tissues, and the amino (NH2)-terminal portion of CSP is involved in this interaction but not the TSR region on the carboxyl (C)-terminus. Peptides based on the NH2-terminal domain could compete with the parasites for the salivary gland receptors and thus inhibit penetration. METHODS: Peptides based on the NH2-terminus and TSR domains of the CSP from avian or human malaria parasites, Plasmodium gallinaceum and Plasmodium falciparum, respectively, were expressed endogenously in mosquito haemolymph using a transient (Sindbis virus-mediated) or stable (piggyBac-mediated transgenesis) system. RESULTS: Transient endogenous expression of partial NH2-terminus peptide from P. falciparum CSP in P. gallinaceum-infected Aedes aegypti resulted in a reduced number of sporozoites in the salivary glands. When a transgenic approach was used to express a partial CSP NH2-terminal domain from P. gallinaceum the number of sporozoites in the salivary glands did not show a difference when compared to controls. However, a significant difference could be observed when mosquitoes with a lower infection were analysed. The same result could not be observed with mosquitoes endogenously expressing peptides based on the TSR domain from either P. gallinaceum or P. falciparum. CONCLUSION: These results support the conclusion that CSP partial NH2-terminal domain can be endogenously expressed to promote a competition for the receptor used by sporozoites to invade salivary glands, and they could be used to block this interaction and reduce parasite transmission. The same effect cannot be obtained with peptides based on the TSR domain.


Subject(s)
Aedes/parasitology , Cell Adhesion , Plasmodium falciparum/physiology , Plasmodium gallinaceum/physiology , Protozoan Proteins/metabolism , Sporozoites/physiology , Aedes/genetics , Animals , Female , Gene Expression , Protozoan Proteins/genetics , Salivary Glands/parasitology , Transgenes
5.
PLoS One ; 9(10): e110551, 2014.
Article in English | MEDLINE | ID: mdl-25333369

ABSTRACT

BACKGROUND: Temperature, humidity, vision, and particularly odor, are external cues that play essential roles to mosquito blood feeding and oviposition. Entomological and behavioral studies employ well-established methods to evaluate mosquito attraction or repellency and to identify the source of the blood meal. Despite the efficacy of such methods, the costs involved in the production or acquisition of all parts, components and the chemical reagents involved are unaffordable for most researchers from poor countries. Thus, a simple and relatively low-cost method capable of evaluating mosquito preferences and the blood volume ingested is desirable. PRINCIPAL FINDINGS: By using Evans blue (EB) vital dye and few standard laboratory supplies, we developed and validated a system capable of evaluating mosquito's choice between two different host sources of blood. EB-injected and PBS-injected mice submitted to a number of situations were placed side by side on the top of a rounded recipient covered with tulle fabric and containing Aedes aegypti mosquitoes. Homogenates from engorged mosquitoes clearly revealed the blood source (EB- or PBS-injected host), either visually or spectrometrically. This method was able to estimate the number of engorded mosquitoes, the volume of blood ingested, the efficacy of a commercial repellent and the attractant effects of black color and human sweat. SIGNIFICANCE: Despite the obvious limitations due to its simplicity and to the dependence of a live source of blood, the present method can be used to assess a number of host variables (diet, aging, immunity, etc) and optimized for several aspects of mosquito blood feeding and vector-host interactions. Thus, it is proposed as an alternative to field studies, and it could be used for initial screenings of chemical compound candidates for repellents or attractants, since it replicates natural conditions of exposure to mosquitoes in a laboratory environment.


Subject(s)
Aedes/physiology , Evans Blue/chemistry , Feeding Behavior , Animals , Discriminant Analysis , Evans Blue/metabolism , Feeding Behavior/drug effects , Female , Insect Repellents/pharmacology , Male , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Models, Animal , Spectrophotometry, Ultraviolet
6.
Parasit Vectors ; 6: 329, 2013 Nov 15.
Article in English | MEDLINE | ID: mdl-24238038

ABSTRACT

BACKGROUND: Saliva is a key element of interaction between hematophagous mosquitoes and their vertebrate hosts. In addition to allowing a successful blood meal by neutralizing or delaying hemostatic responses, the salivary cocktail is also able to modulate the effector mechanisms of host immune responses facilitating, in turn, the transmission of several types of microorganisms. Understanding how the mosquito uses its salivary components to circumvent host immunity might help to clarify the mechanisms of transmission of such pathogens and disease establishment. METHODS: Flow cytometry was used to evaluate if increasing concentrations of A. aegypti salivary gland extract (SGE) affects bone marrow-derived DC differentiation and maturation. Lymphocyte proliferation in the presence of SGE was estimated by a colorimetric assay. Western blot and Annexin V staining assays were used to assess apoptosis in these cells. Naïve and memory cells from mosquito-bite exposed mice or OVA-immunized mice and their respective controls were analyzed by flow cytometry. RESULTS: Concentration-response curves were employed to evaluate A. aegypti SGE effects on DC and lymphocyte biology. DCs differentiation from bone marrow precursors, their maturation and function were not directly affected by A. aegypti SGE (concentrations ranging from 2.5 to 40 µg/mL). On the other hand, lymphocytes were very sensitive to the salivary components and died in the presence of A. aegypti SGE, even at concentrations as low as 0.1 µg/mL. In addition, A. aegypti SGE was shown to induce apoptosis in all lymphocyte populations evaluated (CD4+ and CD8+ T cells, and B cells) through a mechanism involving caspase-3 and caspase-8, but not Bim. By using different approaches to generate memory cells, we were able to verify that these cells are resistant to SGE effects. CONCLUSION: Our results show that lymphocytes, and not DCs, are the primary target of A. aegypti salivary components. In the presence of A. aegypti SGE, naïve lymphocyte populations die by apoptosis in a caspase-3- and caspase-8-dependent pathway, while memory cells are selectively more resistant to its effects. The present work contributes to elucidate the activities of A. aegypti salivary molecules on the antigen presenting cell-lymphocyte axis and in the biology of these cells.


Subject(s)
Aedes/physiology , Dendritic Cells/drug effects , Lymphocytes/drug effects , Saliva/chemistry , Adoptive Transfer , Animals , Cell Differentiation , Cell Proliferation , Flow Cytometry , Mice, Inbred BALB C , Spleen/cytology
7.
J Pept Sci ; 19(9): 575-80, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23893516

ABSTRACT

Controlling the dissemination of malaria requires the development of new drugs against its etiological agent, a protozoan of the Plasmodium genus. Angiotensin II and its analog peptides exhibit activity against the development of immature and mature sporozoites of Plasmodium gallinaceum. In this study, we report the synthesis and characterization of angiotensin II linear and cyclic analogs with anti-plasmodium activity. The peptides were synthesized by a conventional solid-phase method on Merrifield's resin using the t-Boc strategy, purified by RP-HPLC and characterized by liquid chromatography/ESI (+) MS (LC-ESI(+)/MS), amino acid analysis, and capillary electrophoresis. Anti-plasmodium activity was measured in vitro by fluorescence microscopy using propidium iodine uptake as an indicator of cellular damage. The activities of the linear and cyclic peptides are not significantly different (p < 0.05). Kinetics studies indicate that the effects of these peptides on plasmodium viability overtime exhibit a sigmoidal profile and that the system stabilizes after a period of 1 h for all peptides examined. The results were rationalized by partial least-square analysis, assessing the position-wise contribution of each amino acid. The highest contribution of polar amino acids and a Lys residue proximal to the C-terminus, as well as that of hydrophobic amino acids in the N-terminus, suggests that the mechanism underlying the anti-malarial activity of these peptides is attributed to its amphiphilic character.


Subject(s)
Angiotensin II/analogs & derivatives , Angiotensin II/pharmacology , Antimalarials/pharmacology , Plasmodium gallinaceum/drug effects , Amino Acid Sequence , Angiotensin II/chemistry , Animals , Antimalarials/chemistry , Cell Membrane Permeability/drug effects , Chickens , Drug Evaluation, Preclinical , Hydrophobic and Hydrophilic Interactions , Kinetics , Sporozoites/drug effects
8.
J Insect Physiol ; 57(2): 265-73, 2011 Feb.
Article in English | MEDLINE | ID: mdl-21112329

ABSTRACT

Insect disease vectors show diminished fecundity when infected with Plasmodium. This phenomenon has already been demonstrated in laboratory models such as Aedes aegypti, Anopheles gambiae and Anopheles stephensi. This study demonstrates several changes in physiological processes of A. aegypti occurring upon infection with Plasmodium gallinaceum, such as reduced ecdysteroid levels in hemolymph as well as altered expression patterns for genes involved in vitellogenesis, lipid transport and immune response. Furthermore, we could show that P. gallinaceum infected A. aegypti presented a reduction in reproductive fitness, accompanied by an activated innate immune response and increase in lipophorin expression, with the latter possibly representing a nutritional resource for Plasmodium sporozoites.


Subject(s)
Aedes/parasitology , Plasmodium gallinaceum/growth & development , Aedes/genetics , Aedes/immunology , Aedes/physiology , Animals , Chickens/parasitology , Disease Models, Animal , Ecdysteroids/blood , Female , Fertility , Gene Expression Regulation , Genetic Fitness , Hemolymph/parasitology , Hemolymph/physiology , Host-Parasite Interactions , Immunity, Innate , Insect Proteins/genetics , Lipid Metabolism , Lipoproteins/genetics , Malaria, Avian/parasitology , Plasmodium gallinaceum/physiology , Sporozoites/growth & development , Sporozoites/physiology , Vitellogenesis
9.
Biochimie ; 92(8): 933-9, 2010 Aug.
Article in English | MEDLINE | ID: mdl-20363282

ABSTRACT

Kazal-type inhibitors play several important roles in invertebrates, such as anticoagulant, vasodilator and antimicrobial activities. Putative Kazal-type inhibitors were described in several insect transcriptomes. In this paper we characterized for the first time a Kazal unique domain trypsin inhibitor from the Aedes aegypti mosquito. Previously, analyses of sialotranscriptome of A. aegypti showed the potential presence of a Kazal-type serine protease inhibitor, in female salivary glands, carcass and also in whole male, which we named AaTI (A. aegypti trypsin inhibitor). AaTI sequence showed amino acid sequence similarity with insect thrombin inhibitors, serine protease inhibitor from Litopenaeus vannamei hemocytes and tryptase inhibitor from leech Hirudo medicinalis (LDTI). In this work we expressed, purified and characterized the recombinant AaTI (rAaTI). Molecular weight of purified rAaTI was 7 kDa rAaTI presented dissociation constant (K(i)) of 0.15 and 3.8 nM toward trypsin and plasmin, respectively, and it weakly inhibited thrombin amidolytic activity. The rAaTI was also able to prolong prothrombin time, activated partial thromboplastin time and thrombin time. AaTI transcription was confirmed in A. aegypti female salivary gland and gut 3 h and 24 h after blood feeding, suggesting that this molecule can act as anticoagulant during the feeding and digestive processes. Its transcription in larvae and pupae suggested that AaTI may also play other functions during the mosquito's development.


Subject(s)
Anticoagulants/pharmacology , Thrombin/pharmacology , Trypsin Inhibitors/pharmacology , Aedes , Amino Acid Sequence , Animals , Base Sequence , Cloning, Molecular , DNA, Complementary , Molecular Sequence Data , Recombinant Proteins/isolation & purification , Recombinant Proteins/pharmacology , Sequence Homology, Amino Acid
10.
Biochimie ; 92(8): 933-939, Apr 2, 2010.
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP, SESSP-IBACERVO | ID: biblio-1060835

ABSTRACT

Kazal-type inhibitors play several important roles in invertebrates, such as anticoagulant, vasodilator andantimicrobial activities. Putative Kazal-type inhibitors were described in several insect transcriptomes. Inthis paper we characterized for the first time a Kazal unique domain trypsin inhibitor from the Aedes aegypti mosquito. Previously, analyses of sialotranscriptome of A. aegypti showed the potential presence of a Kazal-type serine protease inhibitor, in female salivary glands, carcass and also in whole male, which we named AaTI (A. aegypti trypsin inhibitor). AaTI sequence showed amino acid sequence similarity withinsect thrombin inhibitors, serine protease inhibitor from Litopenaeus vannamei hemocytes and tryptaseinhibitor from leech Hirudo medicinalis (LDTI). In this work we expressed, purified and characterized therecombinant AaTI (rAaTI). Molecular weight of purified rAaTI was 7 kDa rAaTI presented dissociation constant (Ki) of 0.15 and 3.8 nM toward trypsin and plasmin, respectively, and it weakly inhibited thrombin amidolytic activity. The rAaTI was also able to prolong prothrombin time, activated partial thromboplastin time and thrombin time. AaTI transcription was confirmed in A. aegypti female salivary gland and gut 3 h and 24 h after blood feeding, suggesting that this molecule can act as anticoagulant during the feeding and digestive processes. Its transcription in larvae and pupae suggested that AaTI may also play other functions during the mosquito’s development.


Subject(s)
Female , Animals , Aedes , Trypsin Inhibitors , Thrombin/antagonists & inhibitors
11.
PLoS One ; 3(9): e3296, 2008 Sep 29.
Article in English | MEDLINE | ID: mdl-18820728

ABSTRACT

Plasmodium species are the causative agents of malaria, the most devastating insect-borne parasite of human populations. Finding and developing new drugs for malaria treatment and prevention is the goal of much research. Angiotensins I and II (ang I and ang II) and six synthetic related peptides designated Vaniceres 1-6 (VC1-VC6) were assayed in vivo and in vitro for their effects on the development of the avian parasite, Plasmodium gallinaceum. Ang II and VC5 injected into the thoraces of the insects reduced mean intensities of infection in the mosquito salivary glands by 88% and 76%, respectively. Although the mechanism(s) of action is not completely understood, we have demonstrated that these peptides disrupt selectively the P.gallinaceum cell membrane. Additionally, incubation in vitro of sporozoites with VC5 reduced the infectivity of the parasites to their vertebrate host. VC5 has no observable agonist effects on vertebrates, and this makes it a promising drug for malaria prevention and chemotherapy.


Subject(s)
Angiotensin II/pharmacology , Antiparasitic Agents/pharmacology , Malaria/drug therapy , Aedes/genetics , Angiotensin I/chemistry , Angiotensin II/chemistry , Animals , Cell Membrane/drug effects , Chickens , Cytoplasm/metabolism , Hemolysis , Humans , Models, Statistical , Peptides/chemistry , Peptides/therapeutic use , Plasmodium gallinaceum/metabolism , Sporozoites/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...