Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Front Immunol ; 13: 842576, 2022.
Article in English | MEDLINE | ID: mdl-35615352

ABSTRACT

Snakebite envenomations (SBEs) are a neglected medical condition of global importance that mainly affect the tropical and subtropical regions. Clinical manifestations include pain, edema, hemorrhage, tissue necrosis, and neurotoxic signs, and may evolve to functional loss of the affected limb, acute renal and/or respiratory failure, and even death. The standard treatment for snake envenomations is antivenom, which is produced from the hyperimmunization of animals with snake toxins. The inhibition of the effects of SBEs using natural or synthetic compounds has been suggested as a complementary treatment particularly before admission to hospital for antivenom treatment, since these alternative molecules are also able to inhibit toxins. Biodiversity-derived molecules, namely those extracted from medicinal plants, are promising sources of toxin inhibitors that can minimize the deleterious consequences of SBEs. In this review, we systematically synthesize the literature on plant metabolites that can be used as toxin-inhibiting agents, as well as present the potential mechanisms of action of molecules derived from natural sources. These findings aim to further our understanding of the potential of natural products and provide new lead compounds as auxiliary therapies for SBEs.


Subject(s)
Biological Products , Plants, Medicinal , Snake Bites , Animals , Antivenins/pharmacology , Antivenins/therapeutic use , Biological Products/therapeutic use , Snake Bites/drug therapy , Snake Venoms/therapeutic use
2.
Nat Prod Res ; 35(6): 1038-1041, 2021 Mar.
Article in English | MEDLINE | ID: mdl-31135221

ABSTRACT

The essential oil (EO) from the leaves of Onychopetalum periquino, obtained by hydrodistillation, was analyzed by gas chromatography coupled with mass spectrometry (GC-MS), and also was investigated for its larvicidal activity against Aedes aegypti larvae. Thirteen compounds, representing 91.31% of the crude oil, were identified. Major compounds were sesquiterpenes, including ß-elemene (53.16%), spathulenol (11.94%) and ß-selinene (9.25%). The EO showed high larvicidal activity with a lethal concentration (LC50) of 63.75 µg/mL and 100% mortality at 200 µg/mL. These results represent the first report about the chemical composition of O. periquino and the first larvicidal evaluation with Onychopetalum species.[Figure: see text].


Subject(s)
Annonaceae/chemistry , Oils, Volatile/chemistry , Oils, Volatile/pharmacology , Plant Leaves/chemistry , Aedes/drug effects , Animals , Gas Chromatography-Mass Spectrometry , Insecticides/chemistry , Insecticides/pharmacology , Larva/drug effects , Sesquiterpenes/pharmacology
3.
Front Chem ; 7: 629, 2019.
Article in English | MEDLINE | ID: mdl-31620424

ABSTRACT

Secondary metabolites from natural products are a potential source of acetylcholinesterase inhibitors (AChEIs), which is a key enzyme in the treatment of many neurodegenerative diseases. Inspired by the reported activities of isoquinoline-derivative alkaloids herein we report the design, one step synthesis and evaluation by capillary enzyme reactor (ICER) of benzyl analogs (1a-1e) of the tetrahydroprotoberberine alkaloid stepholidine, which is abundant in Onychopetalum amazonicum. Docking analysis based on the crystal structure of Torpedo californica AChE (TcAChE) indicated that π-π interactions were dominant in all planned derivatives and that the residues from esteratic, anionic and peripheral subsites of the enzyme played key interaction roles. Due to the similarities observed when compared with galantamine in the AChE complex, the results suggest that ligand-target interactions would increase, especially for the N-benzyl derivatives. From a series of synthesized compounds, the alkaloids (7R,13aS)-7-benzylstepholidine (1a), (7S,13aS)-7-benzylstepholidine (1b), and (S)-10-O-benzylstepholidine (1d) are reported here for the first time. The on flow bioaffinity chromatography inhibition assay, based on the quantification of choline, revealed the N-benzylated compound 1a and its epimer 1b to be the most active, with IC50 of 40.6 ± 1 and 51.9 ± 1 µM, respectively, and a non-competitive mechanism. The proposed approach, which is based on molecular docking and bioaffinity chromatography, demonstrated the usefulness of stepholidine as a template for the design of rational AChEIs and showed how the target-alkaloid derivatives interact with AChE.

SELECTION OF CITATIONS
SEARCH DETAIL
...