Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Nano ; 17(5): 5047-5058, 2023 Mar 14.
Article in English | MEDLINE | ID: mdl-36821844

ABSTRACT

Two-dimensional (2D) topological insulators have fascinating physical properties which are promising for applications within spintronics. In order to realize spintronic devices working at room temperature, materials with a large nontrivial gap are needed. Bismuthene, a 2D layer of Bi atoms in a honeycomb structure, has recently attracted strong attention because of its record-large nontrivial gap, which is due to the strong spin-orbit coupling of Bi and the unusually strong interaction of the Bi atoms with the surface atoms of the substrate underneath. It would be a significant step forward to be able to form 2D materials with properties such as bismuthene on semiconductors such as GaAs, which has a band gap size relevant for electronics and a direct band gap for optical applications. Here, we present the successful formation of a 2D Bi honeycomb structure on GaAs, which fulfills these conditions. Bi atoms have been incorporated into a clean GaAs(111) surface, with As termination, based on Bi deposition under optimized growth conditions. Low-temperature scanning tunneling microscopy and spectroscopy (LT-STM/S) demonstrates a well-ordered large-scale honeycomb structure, consisting of Bi atoms in a √3 × âˆš3 30° reconstruction on GaAs(111). X-ray photoelectron spectroscopy shows that the Bi atoms of the honeycomb structure only bond to the underlying As atoms. This is supported by calculations based on density functional theory that confirm the honeycomb structure with a large Bi-As binding energy and predict Bi-induced electronic bands within the GaAs band gap that open up a gap of nontrivial topological nature. STS results support the existence of Bi-induced states within the GaAs band gap. The GaAs:Bi honeycomb layer found here has a similar structure as previously published bismuthene on SiC or on Ag, though with a significantly larger lattice constant and only weak Bi-Bi bonding. It can therefore be considered as an extreme case of bismuthene, which is fundamentally interesting. Furthermore, it has the same exciting electronic properties, opening a large nontrivial gap, which is the requirement for room-temperature spintronic applications, and it is directly integrated in GaAs, a direct band gap semiconductor with a large range of (opto)electronic devices.

2.
ACS Appl Mater Interfaces ; 14(31): 36209-36216, 2022 Aug 10.
Article in English | MEDLINE | ID: mdl-35867345

ABSTRACT

Adherence of metal oxides to graphene is of fundamental significance to graphene nanoelectronic and spintronic interfaces. Titanium oxide and aluminum oxide are two widely used tunnel barriers in such devices, which offer optimum interface resistance and distinct interface conditions that govern transport parameters and device performance. Here, we reveal a fundamental difference in how these metal oxides interface with graphene through electrical transport measurements and Raman and photoelectron spectroscopies, combined with ab initio electronic structure calculations of such interfaces. While both oxide layers cause surface charge transfer induced p-type doping in graphene, in sharp contrast to TiOx, the AlOx/graphene interface shows the presence of appreciable sp3 defects. Electronic structure calculations disclose that significant p-type doping occurs due to a combination of sp3 bonds formed between C and O atoms at the interface and possible slightly off-stoichiometric defects of the aluminum oxide layer. Furthermore, the sp3 hybridization at the AlOx/graphene interface leads to distinct magnetic moments of unsaturated bonds, which not only explicates the widely observed low spin-lifetimes in AlOx barrier graphene spintronic devices but also suggests possibilities for new hybrid resistive switching and spin valves.

SELECTION OF CITATIONS
SEARCH DETAIL
...