Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Sci Pollut Res Int ; 25(19): 18364-18376, 2018 Jul.
Article in English | MEDLINE | ID: mdl-29797194

ABSTRACT

Acetylcholinesterase (AChE) acts on the hydrolysis of acetylcholine, rapidly removing this neurotransmitter at cholinergic synapses and neuromuscular junctions as well as in neuronal growth and differentiation, modulation of cell adhesion ("electrotactins") and aryl-acylamidase activity (AAA). This enzyme is also found in erythrocyte, as 160 kDa dimer that anchors to the plasma membrane via glycophosphatidylinositol. The function of this enzyme in erythrocytes has not yet been elucidated; however, it is suspected to participate in cell-to-cell interactions. Here, a review on erythrocyte AChE characteristics and use as biomarker for organophosphorus and carbamate insecticides is presented since it is the first specific target/barrier of the action of these pesticides, besides plasma butyrylcholinesterase (BChE). However, some past and current methods have disadvantages: (a) not discriminating the activities of AChE and BChE; (b) low accuracy due to interference of hemoglobin in whole blood samples. On the other hand, extraction methods of hemoglobin-free erythrocyte AChE allows: (a) the freezing and transporting of samples; (b) samples free of colorimetric interference; (c) data from only erythrocyte AChE activity; (d) erythrocyte AChE specific activity presents higher correlation with the central nervous system AChE than other peripheral ChEs; (e) slow spontaneous regeneration against anti-ChEs agents of AChE in comparison to BChE, thus increasing the chances of detecting such compounds following longer interval after exposure. As monitoring perspectives, hemoglobin-free methodologies may be promising alternatives to assess the degree of exposure since they are not influenced by this interfering agent.


Subject(s)
Acetylcholinesterase/blood , Butyrylcholinesterase/blood , Environmental Exposure/analysis , Erythrocytes/enzymology , Insecticides/analysis , Animals , Biomarkers/blood , Humans
2.
Environ Technol ; 37(23): 3030-5, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27046480

ABSTRACT

Tambaqui (Colossoma macropomum) is among the most cultivated fish species in tropical countries. Stress is the main cause of disease in fish farms. The genus Aeromonas is a common causative agent of fish diseases. This work reports the identification of Aeromonas species colonizing gills of C. macropomum submitted or not to a confinement stress. We also evaluated changes in serum levels of lectins (carbohydrate-binding proteins that are components of fish immune system) in tambaqui submitted to a challenge using two isolated Aeromonas strains. Gill tissues from stressed and unstressed fishes were used to isolate Aeromonas. Then 72 Aeromonas strains were isolated, 97% being from stressed fishes. Among these, 63 were identified at species level and 6 were classified as atypical Aeromonas strains. The most prevalent species were Aeromonas bestiarum and Aeromonas caviae and their strains were used in bacterial challenges. The lectin serum levels significantly increased after 24 h of infection with A. bestiarum; however, no significant increase was found for infection with A. caviae. In conclusion, C. macropomum gills are susceptible to colonization by different Aeromonas species, mainly at confinement stressful conditions, and serum lectins may have a role in the acute immunological response towards infection by A. bestiarum.


Subject(s)
Aeromonas/isolation & purification , Characiformes/microbiology , Fish Diseases/microbiology , Gram-Negative Bacterial Infections/microbiology , Lectins/blood , Stress, Physiological/physiology , Aeromonas/classification , Animals , Characiformes/blood , Fish Diseases/blood , Gills/microbiology , Gram-Negative Bacterial Infections/blood , Gram-Negative Bacterial Infections/veterinary
SELECTION OF CITATIONS
SEARCH DETAIL
...