Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
Phys Rev E ; 105(4-1): 044121, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35590670

ABSTRACT

We study in detail an open quantum generalization of a classical kinetically constrained model-the East model-known to exhibit slow glassy dynamics stemming from a complex hierarchy of metastable states with distinct lifetimes. Using the recently introduced theory of classical metastability for open quantum systems, we show that the driven open quantum East model features a hierarchy of classical metastabilities at low temperature and weak driving field. We find that the effective long-time description of its dynamics not only is classical, but shares many properties with the classical East model, such as obeying an effective detailed balance condition and lacking static interactions between excitations, but with this occurring within a modified set of metastable phases which are coherent, and with an effective temperature that is dependent on the coherent drive.

2.
Phys Rev Lett ; 121(13): 130601, 2018 Sep 28.
Article in English | MEDLINE | ID: mdl-30312036

ABSTRACT

Thermodynamic uncertainty relations (TURs) are recently established relations between the relative uncertainty of time-integrated currents and entropy production in nonequilibrium systems. For small perturbations away from equilibrium, linear response (LR) theory provides the natural framework to study generic nonequilibrium processes. Here, we use LR to derive TURs in a straightforward and unified way. Our approach allows us to generalize TURs to systems without local time-reversal symmetry, including, e.g., ballistic transport and periodically driven classical and quantum systems. We find that, for broken time reversal, the bounds on the relative uncertainty are controlled both by dissipation and by a parameter encoding the asymmetry of the Onsager matrix. We illustrate our results with an example from mesoscopic physics. We also extend our approach beyond linear response: for Markovian dynamics, it reveals a connection between the TUR and current fluctuation theorems.

3.
Phys Rev E ; 94(5-1): 052132, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27967090

ABSTRACT

We apply a recently developed theory for metastability in open quantum systems to a one-dimensional dissipative quantum Ising model. Earlier results suggest this model features either a nonequilibrium phase transition or a smooth but sharp crossover, where the stationary state changes from paramagnetic to ferromagnetic, accompanied by strongly intermittent emission dynamics characteristic of first-order coexistence between dynamical phases. We show that for a range of parameters close to this transition or crossover point the dynamics of the finite system displays pronounced metastability, i.e., the system relaxes first to long-lived metastable states before eventual relaxation to the true stationary state. From the spectral properties of the quantum master operator we characterize the low-dimensional manifold of metastable states, which are shown to be probability mixtures of two, paramagnetic and ferromagnetic, metastable phases. We also show that for long times the dynamics can be approximated by a classical stochastic dynamics between the metastable phases that is directly related to the intermittent dynamics observed in quantum trajectories and thus the dynamical phases.

4.
Phys Rev Lett ; 116(24): 240404, 2016 Jun 17.
Article in English | MEDLINE | ID: mdl-27367368

ABSTRACT

By generalizing concepts from classical stochastic dynamics, we establish the basis for a theory of metastability in Markovian open quantum systems. Partial relaxation into long-lived metastable states-distinct from the asymptotic stationary state-is a manifestation of a separation of time scales due to a splitting in the spectrum of the generator of the dynamics. We show here how to exploit this spectral structure to obtain a low dimensional approximation to the dynamics in terms of motion in a manifold of metastable states constructed from the low-lying eigenmatrices of the generator. We argue that the metastable manifold is in general composed of disjoint states, noiseless subsystems, and decoherence-free subspaces.

SELECTION OF CITATIONS
SEARCH DETAIL