Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 37
Filter
Add more filters










Publication year range
1.
Cell ; 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38917789

ABSTRACT

Spatial transcriptomics (ST) methods unlock molecular mechanisms underlying tissue development, homeostasis, or disease. However, there is a need for easy-to-use, high-resolution, cost-efficient, and 3D-scalable methods. Here, we report Open-ST, a sequencing-based, open-source experimental and computational resource to address these challenges and to study the molecular organization of tissues in 2D and 3D. In mouse brain, Open-ST captured transcripts at subcellular resolution and reconstructed cell types. In primary head-and-neck tumors and patient-matched healthy/metastatic lymph nodes, Open-ST captured the diversity of immune, stromal, and tumor populations in space, validated by imaging-based ST. Distinct cell states were organized around cell-cell communication hotspots in the tumor but not the metastasis. Strikingly, the 3D reconstruction and multimodal analysis of the metastatic lymph node revealed spatially contiguous structures not visible in 2D and potential biomarkers precisely at the 3D tumor/lymph node boundary. All protocols and software are available at https://rajewsky-lab.github.io/openst.

2.
Nat Commun ; 12(1): 2340, 2021 04 20.
Article in English | MEDLINE | ID: mdl-33879786

ABSTRACT

Cancer is characterized by pervasive epigenetic alterations with enhancer dysfunction orchestrating the aberrant cancer transcriptional programs and transcriptional dependencies. Here, we epigenetically characterize human colorectal cancer (CRC) using de novo chromatin state discovery on a library of different patient-derived organoids. By exploring this resource, we unveil a tumor-specific deregulated enhancerome that is cancer cell-intrinsic and independent of interpatient heterogeneity. We show that the transcriptional coactivators YAP/TAZ act as key regulators of the conserved CRC gained enhancers. The same YAP/TAZ-bound enhancers display active chromatin profiles across diverse human tumors, highlighting a pan-cancer epigenetic rewiring which at single-cell level distinguishes malignant from normal cell populations. YAP/TAZ inhibition in established tumor organoids causes extensive cell death unveiling their essential role in tumor maintenance. This work indicates a common layer of YAP/TAZ-fueled enhancer reprogramming that is key for the cancer cell state and can be exploited for the development of improved therapeutic avenues.


Subject(s)
Adaptor Proteins, Signal Transducing/genetics , Colorectal Neoplasms/genetics , Enhancer Elements, Genetic , Epigenesis, Genetic , Trans-Activators/genetics , Transcription Factors/genetics , Gene Expression Regulation, Neoplastic , Histone Code , Humans , Models, Genetic , Organoids/metabolism , RNA-Seq , Single-Cell Analysis , Transcriptional Coactivator with PDZ-Binding Motif Proteins , Tumor Cells, Cultured , YAP-Signaling Proteins
3.
Stem Cell Reports ; 13(5): 847-861, 2019 11 12.
Article in English | MEDLINE | ID: mdl-31607568

ABSTRACT

The regulation of the proliferation and polarity of neural progenitors is crucial for the development of the brain cortex. Animal studies have implicated glycogen synthase kinase 3 (GSK3) as a pivotal regulator of both proliferation and polarity, yet the functional relevance of its signaling for the unique features of human corticogenesis remains to be elucidated. We harnessed human cortical brain organoids to probe the longitudinal impact of GSK3 inhibition through multiple developmental stages. Chronic GSK3 inhibition increased the proliferation of neural progenitors and caused massive derangement of cortical tissue architecture. Single-cell transcriptome profiling revealed a direct impact on early neurogenesis and uncovered a selective role of GSK3 in the regulation of glutamatergic lineages and outer radial glia output. Our dissection of the GSK3-dependent transcriptional network in human corticogenesis underscores the robustness of the programs determining neuronal identity independent of tissue architecture.


Subject(s)
Cerebral Cortex/cytology , Glycogen Synthase Kinase 3/metabolism , Neurogenesis , Neurons/cytology , Organoids/cytology , Cell Line , Cell Proliferation , Cerebral Cortex/metabolism , Gene Deletion , Glycogen Synthase Kinase 3/genetics , Humans , Neurons/metabolism , Organoids/metabolism , Transcriptome
4.
Int J Genomics ; 2018: 1243858, 2018.
Article in English | MEDLINE | ID: mdl-29854718

ABSTRACT

Next-generation sequencing has uncovered novel classes of small RNAs (sRNAs) in eukaryotes, in addition to the well-known miRNAs, siRNAs, and piRNAs. In particular, sRNA species arise from transcription start sites (TSSs) and the transcription termination sites (TTSs) of genes. However, a detailed characterization of these new classes of sRNAs is still lacking. Here, we present a comprehensive study of sRNAs derived from TTSs of expressed genes (TTSa-RNAs) in human cell lines and primary tissues. Taking advantage of sRNA-sequencing, we show that TTSa-RNAs are present in the nuclei of human cells, are loaded onto both AGO1 and AGO2, and their biogenesis does not require DICER and AGO2 endonucleolytic activity. TTSa-RNAs display a strong bias against a G residue in the first position at 5' end, a known feature of AGO-bound sRNAs, and a peculiar oligoA tail at 3' end. AGO-bound TTSa-RNAs derive from genes involved in cell cycle progression regulation and DNA integrity checkpoints. Finally, we provide evidence that TTSa-RNAs can be detected by sRNA-Seq in primary human tissue, and their expression increases in tumor samples as compared to nontumor tissues, suggesting that in the future, TTSa-RNAs might be explored as biomarker for diagnosis or prognosis of human malignancies.

5.
Genome Biol ; 18(1): 237, 2017 Dec 20.
Article in English | MEDLINE | ID: mdl-29262850

ABSTRACT

BACKGROUND: Circular RNAs are a class of endogenous RNAs with various functions in eukaryotic cells. Worthy of note, circular RNAs play a critical role in cancer. Currently, nothing is known about their role in head and neck squamous cell carcinoma (HNSCC). The identification of circular RNAs in HNSCC might become useful for diagnostic and therapeutic strategies in HNSCC. RESULTS: Using samples from 115 HNSCC patients, we find that circPVT1 is over-expressed in tumors compared to matched non-tumoral tissues, with particular enrichment in patients with TP53 mutations. circPVT1 up- and down-regulation determine, respectively, an increase and a reduction of the malignant phenotype in HNSCC cell lines. We show that circPVT1 expression is transcriptionally enhanced by the mut-p53/YAP/TEAD complex. circPVT1 acts as an oncogene modulating the expression of miR-497-5p and genes involved in the control of cell proliferation. CONCLUSIONS: This study shows the oncogenic role of circPVT1 in HNSCC, extending current knowledge about the role of circular RNAs in cancer.


Subject(s)
Adaptor Proteins, Signal Transducing/genetics , Biomarkers, Tumor , Carcinoma, Squamous Cell/genetics , Head and Neck Neoplasms/genetics , Mutation , Phosphoproteins/genetics , RNA, Long Noncoding/genetics , RNA , Tumor Suppressor Protein p53/genetics , Adaptor Proteins, Signal Transducing/metabolism , Carcinogenesis/genetics , Carcinoma, Squamous Cell/metabolism , Carcinoma, Squamous Cell/mortality , Cell Line, Tumor , Cell Proliferation , Gene Expression Regulation, Neoplastic , Head and Neck Neoplasms/metabolism , Head and Neck Neoplasms/mortality , Humans , MicroRNAs/genetics , Models, Biological , Multiprotein Complexes , Oncogenes/genetics , Phenotype , Phosphoproteins/metabolism , Prognosis , Promoter Regions, Genetic , Protein Binding , RNA Transport , RNA, Circular , RNA, Long Noncoding/blood , Squamous Cell Carcinoma of Head and Neck , Transcription Factors , Tumor Suppressor Protein p53/metabolism , YAP-Signaling Proteins
6.
Data Brief ; 8: 575-8, 2016 Sep.
Article in English | MEDLINE | ID: mdl-27408928

ABSTRACT

The dataset presented here represents a microarray experiment of Jurkat cell line over-expressing miR-93 after lentiviral transgenic construct transduction. Three biological replicates have been performed. We further provide normalized and processed data, log2 Fold Change based ranked list and GOterms resulting table. The raw microarray data are available in the ArrayExpress database (www.ebi.ac.uk/arrayexpress) under accession number ArrayExpress: E-MTAB-4588.

7.
Data Brief ; 7: 604-6, 2016 Jun.
Article in English | MEDLINE | ID: mdl-27054165

ABSTRACT

We set out to identify miR-21 targets in Jurkat cells using a high-throughput biochemical approach (10.1016/j.biochi.2014.09.021[1]). Using a specific monoclonal antibody raised against AGO2, RISC complexes were immunopurified in Jurkat cells over-expressing miR-21 following lentiviral trasduction as well as in Jurkat control cells lines. A parallel immunoprecipitation using isotype-matched rat IgG was performed as a control. AGO2 associated mRNAs were profiled by microarray (GEO: GSE37212). AGO2 bound miRNAs were profiled by RNA-seq.

8.
Genome Res ; 26(3): 331-41, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26701625

ABSTRACT

DNA damage activates TP53-regulated surveillance mechanisms that are crucial in suppressing tumorigenesis. TP53 orchestrates these responses directly by transcriptionally modulating genes, including microRNAs (miRNAs), and by regulating miRNA biogenesis through interacting with the DROSHA complex. However, whether the association between miRNAs and AGO2 is regulated following DNA damage is not yet known. Here, we show that, following DNA damage, TP53 interacts with AGO2 to induce or reduce AGO2's association of a subset of miRNAs, including multiple let-7 family members. Furthermore, we show that specific mutations in TP53 decrease rather than increase the association of let-7 family miRNAs, reducing their activity without preventing TP53 from interacting with AGO2. This is consistent with the oncogenic properties of these mutants. Using AGO2 RIP-seq and PAR-CLIP-seq, we show that the DNA damage-induced increase in binding of let-7 family members to the RISC complex is functional. We unambiguously determine the global miRNA-mRNA interaction networks involved in the DNA damage response, validating them through the identification of miRNA-target chimeras formed by endogenous ligation reactions. We find that the target complementary region of the let-7 seed tends to have highly fixed positions and more variable ones. Additionally, we observe that miRNAs, whose cellular abundance or differential association with AGO2 is regulated by TP53, are involved in an intricate network of regulatory feedback and feedforward circuits. TP53-mediated regulation of AGO2-miRNA interaction represents a new mechanism of miRNA regulation in carcinogenesis.


Subject(s)
Argonaute Proteins/genetics , Gene Expression Regulation , Gene Regulatory Networks , MicroRNAs/genetics , RNA Interference , RNA, Messenger/genetics , Tumor Suppressor Protein p53/metabolism , Cell Line, Tumor , DNA Breaks, Double-Stranded/drug effects , Doxorubicin/pharmacology , Gene Expression Regulation/drug effects , Gene Knockout Techniques , Humans , Protein Binding , Transcription, Genetic
9.
Lancet ; 385 Suppl 1: S15, 2015 Feb 26.
Article in English | MEDLINE | ID: mdl-26312837

ABSTRACT

BACKGROUND: DNA damage transactivates tumour protein p53 (TP53)-regulated surveillance, crucial in suppressing tumorigenesis. TP53 mediates this process directly by transcriptionally modulating gene and microRNA (miRNA) expression and indirectly by regulating miRNA biogenesis. However, the role of TP53 in regulating miRNA-AGO2 loading and global changes in AGO2 binding to its gene targets in response to DNA damage are unknown. These processes might be novel mechanisms by which TP53 regulates miRNAs in response to DNA damage. METHODS: To show the network of miRNA-mRNA interactions that occur in response to DNA damage, we stimulated TP53 wild-type and null cell-lines with doxorubicin and performed RNA sequencing from total RNA (RNA-Seq) and AGO2-immunoprecipitated RNA (AGO2-RIP-Seq). We used a combined AGO2 RIP-seq and AGO2 PAR-CLIP-seq (photoactivatable-ribonucleoside-enhanced cross-linking and immunoprecipitation) approach to determine the exact sites of interaction between the AGO2-bound miRNAs and their mRNA targets. FINDINGS: TP53 directly associated with AGO2, and induced and reduced loading of a subset of miRNAs, including the lethal 7 (let-7) miRNA family members, onto AGO2 in response to DNA damage. Although mutated TP53 maintained its capacity to interact with AGO2, it mediated unloading instead of loading of let-7 family miRNAs, thereby reducing their activity. We determined the miRNA-mRNA interaction networks involved in the response to DNA damage both in the presence and absence of TP53. Furthermore, we showed that miRNAs whose cellular abundance or differential loading onto AGO2 was regulated by TP53 were involved in an intricate network of regulatory feedback and feedforward circuits that fine-tuned gene expression levels in response to DNA damage to permit the repair of DNA damage or initiation of programmed cell death. INTERPRETATION: Control of AGO2 loading by TP53 is a new mechanism of miRNA regulation in carcinogenesis. FUNDING: UK Medical Research Council, Action Against Cancer.

10.
Biomed Res Int ; 2015: 304208, 2015.
Article in English | MEDLINE | ID: mdl-25883951

ABSTRACT

It is becoming increasingly clear that short and long noncoding RNAs critically participate in the regulation of cell growth, differentiation, and (mis)function. However, while the functional characterization of short non-coding RNAs has been reaching maturity, there is still a paucity of well characterized long noncoding RNAs, even though large studies in recent years are rapidly increasing the number of annotated ones. The long noncoding RNA PVT1 is encoded by a gene that has been long known since it resides in the well-known cancer risk region 8q24. However, a couple of accidental concurrent conditions have slowed down the study of this gene, that is, a preconception on the primacy of the protein-coding over noncoding RNAs and the prevalent interest in its neighbor MYC oncogene. Recent studies have brought PVT1 under the spotlight suggesting interesting models of functioning, such as competing endogenous RNA activity and regulation of protein stability of important oncogenes, primarily of the MYC oncogene. Despite some advancements in modelling the PVT1 role in cancer, there are many questions that remain unanswered concerning the precise molecular mechanisms underlying its functioning.


Subject(s)
Gene Amplification , Gene Dosage , Gene Expression Regulation, Neoplastic , Neoplasms/genetics , RNA, Long Noncoding/genetics , Animals , Cell Transformation, Neoplastic , Chromosomes, Human, Pair 8/genetics , DNA Copy Number Variations , Disease Models, Animal , Genomics , Humans , Oncogenes
11.
Leuk Res ; 39(4): 479-85, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25740602

ABSTRACT

Acute lymphoblastic leukemia (ALL) is an aggressive cancer that occurs in both children and adults. Starting from an integrated analysis of miRNA/mRNA expression profiles in 20 ALL patients, we identify a negative correlation between miR-181a and EGR1. Coherently, miR-181a over-expression in Jurkat T-ALL cells decreases EGR1 expression, increasing cell proliferation and enhancing the cell-cycle progression from G1 to S phase. We show that EGR1 is a new direct target of miR-181a. Our findings suggest that miR-181a behaves as an onco-miRNA in ALL by down-regulating EGR1.


Subject(s)
Biomarkers, Tumor/genetics , Cell Proliferation , Early Growth Response Protein 1/metabolism , MicroRNAs/genetics , Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics , Precursor Cell Lymphoblastic Leukemia-Lymphoma/pathology , Adult , Apoptosis , Biomarkers, Tumor/metabolism , Blotting, Western , Cell Cycle , Early Growth Response Protein 1/genetics , Gene Expression Profiling , Humans , Immunoenzyme Techniques , Oligonucleotide Array Sequence Analysis , Precursor Cell Lymphoblastic Leukemia-Lymphoma/metabolism , RNA, Messenger/genetics , Real-Time Polymerase Chain Reaction , Reverse Transcriptase Polymerase Chain Reaction , Tumor Cells, Cultured
12.
Genes Chromosomes Cancer ; 54(4): 222-34, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25645730

ABSTRACT

To assess the involvement of microRNAs (miRNAs) in B-cell receptor (BCR) stimulation, we first evaluated miRNA profiling following IgM cross-linking in chronic lymphocytic leukemia (CLL) cells and in normal B lymphocytes. Second, we combined miRNA and gene expression data to identify putative miRNA functional networks. miRNA profiling showed distinctive patterns of regulation after stimulation in leukemic versus normal B lymphocytes and identified a differential responsiveness to BCR engagement in CLL subgroups according to the immunoglobulin heavy chain variable region mutational status and clinical outcome. The most significantly modulated miRNAs in stimulated CLL are miR-132 and miR-212. Notably, these miRNAs appeared regulated in progressive but not in stable CLL. Accordingly, gene profiling showed a significant transcriptional response to stimulation exclusively in progressive CLL. Based on these findings, we combined miRNA and gene expression data to investigate miR-132 and miR-212 candidate interactions in this CLL subgroup. Correlation analysis pointed to a link between these miRNAs and RB/E2F and TP53 cascades with proproliferative effects, as corroborated by functional analyses. Finally, basal levels of miR-132 and miR-212 were measured in an independent cohort of 20 unstimulated CLL cases and both showed lower expression in progressive compared to stable patients, suggesting an association between the expression of these molecules and disease prognosis. Overall, our results support a model involving miR-132 and miR-212 upregulation in sustaining disease progression in CLL. These miRNAs may therefore provide new valuable strategies for therapeutic intervention.


Subject(s)
Immunoglobulin M/immunology , Leukemia, Lymphocytic, Chronic, B-Cell/genetics , Leukemia, Lymphocytic, Chronic, B-Cell/immunology , MicroRNAs/blood , Up-Regulation , Adult , Aged , Aged, 80 and over , Cell Proliferation , Female , Gene Regulatory Networks , Humans , Male , Middle Aged
13.
Nucleic Acids Res ; 43(3): 1498-512, 2015 Feb 18.
Article in English | MEDLINE | ID: mdl-25605800

ABSTRACT

Argonaute (AGO) proteins have a well-established role in post-transcriptional regulation of gene expression as key component of the RNA silencing pathways. Recent evidence involves AGO proteins in mammalian nuclear processes such as transcription and splicing, though the mechanistic aspects of AGO nuclear functions remain largely elusive. Here, by SILAC-based interaction proteomics, we identify the chromatin-remodelling complex SWI/SNF as a novel AGO2 interactor in human cells. Moreover, we show that nuclear AGO2 is loaded with a novel class of Dicer-dependent short RNAs (sRNAs), that we called swiRNAs, which map nearby the Transcription Start Sites (TSSs) bound by SWI/SNF. The knock-down of AGO2 decreases nucleosome occupancy at the first nucleosome located downstream of TSSs in a swiRNA-dependent manner. Our findings indicate that in human cells AGO2 binds SWI/SNF and a novel class of sRNAs to establish nucleosome occupancy on target TSSs.


Subject(s)
Argonaute Proteins/metabolism , DNA-Binding Proteins/metabolism , Nucleosomes/metabolism , Transcription Factors/metabolism , Transcription, Genetic , Base Sequence , Blotting, Western , Cell Line , Chromatography, Liquid , Electrophoresis, Polyacrylamide Gel , Humans , RNA, Small Interfering/genetics , Tandem Mass Spectrometry
14.
Biochimie ; 107 Pt B: 319-26, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25304039

ABSTRACT

microRNAs (miRNAs) are a class of small non-coding RNAs acting as post-transcriptional regulators of gene expression and play fundamental roles in regulating immune response and autoimmunity. We show that memory T-lymphocytes express higher levels of miR-21 compared to naïve T-lymphocytes and that miR-21 expression is induced upon TCR engagement of naïve T-cells. We identify bona fide miR-21 targets by direct immuno-purification and profiling of AGO2-associated mRNAs in Jurkat cells over-expressing miR-21. Our analysis shows that, in T-lymphocytes, miR-21 targets genes are involved in signal transduction. Coherently, TCR signalling is dampened upon miR-21 over-expression in Jurkat cells, resulting in lower ERK phosphorylation, AP-1 activation and CD69 expression. Primary human lymphocytes in which we impaired miR-21 activity, display IFN-γ production enhancement and stronger activation in response to TCR engagement as assessed by CD69, OX40, CD25 and CD127 analysis. By intracellular staining of the endogenous protein in primary T-lymphocytes we validate three key regulators of lymphocyte activation as novel miR-21 targets. Our results highlight an unexpected function of miR-21 as a negative modulator of signal transduction downstream of TCR in T-lymphocytes.


Subject(s)
Lymphocyte Activation/genetics , MicroRNAs/metabolism , T-Lymphocytes/physiology , GTP-Binding Protein alpha Subunits/genetics , GTP-Binding Protein alpha Subunits, Gq-G11 , Gene Expression Regulation , High-Throughput Nucleotide Sequencing , Humans , Interferon-gamma/metabolism , Intracellular Signaling Peptides and Proteins/genetics , Jurkat Cells , Lentivirus/genetics , Membrane Proteins/genetics , MicroRNAs/genetics , Receptors, Antigen, T-Cell/metabolism , Receptors, CXCR4/genetics , Reproducibility of Results , Signal Transduction/genetics
15.
Sci Total Environ ; 472: 672-80, 2014 Feb 15.
Article in English | MEDLINE | ID: mdl-24317173

ABSTRACT

Exposure to inorganic Arsenic (iAs) through drinking water is a major public health problem affecting most countries. iAs has been classified by the International Agency for Research on Cancer as Group 1: "Carcinogenic to humans". Although numerous studies have shown the related adverse effects of iAs, sensitive appropriate biomarkers for studies of environmental epidemiology are still required. The present work aims at investigate the role of microRNAs (miRNAs), powerful negative regulators of gene expression, playing a key role in many physiological and pathological cellular processes, in iAs exposure. To this end, we analyzed miRNA changes in expression profile triggered by iAs exposure in Jurkat cell line. We used microarray technology to profile the expression of miRNAs following 2 µmol/L sodium arsenite treatment at different time points. Moreover, we performed phenotypic analysis of iAs treated cells. Real Time Polymerase Chain Reaction (RT-PCR) was used to validate miRNA microarray data and to assay expression modulation of selected relevant mRNAs. Finally, bioinformatics techniques were applied to reconstruct iAs-relevant molecular pathways and miRNA regulatory networks from the expression data. We report miRNAs modulated after iAs treatment in Jurkat cells. In particular, we highlight 36 miRNAs exhibiting consistent dysregulation and particularly a panel of 8 miRNAs which we also validated by RT-PCR analysis. Computational analysis of lists of putative target genes for these 8 miRNAs points to an involvement in arsenic-response pathways, for a subset of them, that were analyzed by RT-PCR. Furthermore, iAs exposure reveals induction of cell cycle progression and the failure of apoptosis, supporting the idea of iAs carcinogenic activity. Our study provides a list of miRNAs whose expression levels are affected by iAs treatment, corroborating the importance of proceeding with the hunt for specific subset of miRNAs, which can serve as potential biomarkers of iAs effects with useful diagnostic value.


Subject(s)
Arsenic/toxicity , Water Pollutants, Chemical/toxicity , Biomarkers/chemistry , Environmental Monitoring/methods , Gene Expression , Humans , MicroRNAs/metabolism , Proto-Oncogene Mas , Real-Time Polymerase Chain Reaction , Reverse Transcriptase Polymerase Chain Reaction
17.
PLoS One ; 5(8): e12067, 2010 Aug 10.
Article in English | MEDLINE | ID: mdl-20706588

ABSTRACT

BACKGROUND: The human Vasoactive Intestinal Peptide (VIP) is a neurokine with effects on the immune system where it is involved in promoting tolerance. In this context, one of its receptors, VPAC1, has been found to be down-modulated in cells of the immune network in response to activating stimuli. In particular, the bacterial liposaccharide (LPS), a strong activator of the innate immune system, induces a rapid decrease of VPAC1 expression in monocytes and this event correlates with polymorphisms in the 3'-UTR of the gene. METHODOLOGY/PRINCIPAL FINDINGS: MicroRNA 525-5p, having as putative target the 3'-UTR region of VPAC1, has been analysed for its expression in monocytes and for its role in down-modulating VPAC1 expression. We report here that miR-525-5p is promptly up-regulated in LPS-treated monocytes. This microRNA, when co-transfected in 293T cells together with a construct containing the 3'-UTR of the VPAC1 gene, significantly reduced the luciferase activity in a standard expression assay. The U937 cell line as well as primary monocytes enforced to express miR-525-5p, both down-modulate VPAC1 expression at similar extent. CONCLUSIONS/SIGNIFICANCE: Our results show that the response to an inflammatory stimulus elicits in monocytes a rapid increase of miR-525-5p that targets a signaling pathway involved in the control of the immune homeostasis.


Subject(s)
Down-Regulation/genetics , MicroRNAs/genetics , MicroRNAs/metabolism , Receptors, Vasoactive Intestinal Polypeptide, Type I/genetics , 3' Untranslated Regions/genetics , Base Sequence , Humans , Lipopolysaccharides/immunology , Monocytes/immunology , Monocytes/metabolism , U937 Cells , Up-Regulation/immunology
18.
Reprod Toxicol ; 29(4): 427-32, 2010 Jul.
Article in English | MEDLINE | ID: mdl-20307648

ABSTRACT

The plasticizer di-(2-ethylhexyl)phthalate (DEHP) affects reproductive development, glycogen and lipid metabolism. Whereas liver is a main DEHP target in adult rodents, the potential impact on metabolic programming is unknown. Effects of in utero DEHP exposure on liver development were investigated upon treatment of pregnant CD-1 mice on gestational days (GD)11-19. F1 mice were examined at post-natal days 21 (weaning) and 35 (start of puberty): parameters included liver histopathological, immunocytochemical and alpha-fetoprotein (AFP) gene expression analyses. In utero DEHP exposure altered post-natal liver development in weanling mice causing significant, dose-related (i) increased hepatosteatosis, (ii) decreased glycogen storage, (iii) increased beta-catenin intracytoplasmic localization (females only). At puberty, significantly decreased glycogen storage was still present in males. A treatment-induced phenotype was identified with lack of glycogen accumulation and intracytoplasmic localization of beta-catenin which was associated with increased AFP gene expression. Our findings suggested that DEHP alters post-natal liver development delaying the programming of glycogen metabolism.


Subject(s)
Chemical and Drug Induced Liver Injury/etiology , Diethylhexyl Phthalate/toxicity , Environmental Pollutants/toxicity , Fatty Liver/chemically induced , Liver/drug effects , Prenatal Exposure Delayed Effects/chemically induced , Animals , Chemical and Drug Induced Liver Injury/metabolism , Chemical and Drug Induced Liver Injury/pathology , Cytoplasm/metabolism , Fatty Liver/metabolism , Fatty Liver/pathology , Female , Gene Expression/drug effects , Liver/growth & development , Liver/metabolism , Liver Glycogen/metabolism , Maternal Exposure , Mice , Mice, Inbred Strains , Pregnancy , Prenatal Exposure Delayed Effects/metabolism , RNA, Messenger/metabolism , alpha-Fetoproteins/genetics , alpha-Fetoproteins/metabolism , beta Catenin/metabolism
19.
Blood ; 115(2): 265-73, 2010 Jan 14.
Article in English | MEDLINE | ID: mdl-19965651

ABSTRACT

Activation of the T cell-mediated immune response has been associated with changes in the expression of specific microRNAs (miRNAs). However, the role of miRNAs in the development of an effective immune response is just beginning to be explored. This study focuses on the functional role of miR-146a in T lymphocyte-mediated immune response and provides interesting clues on the transcriptional regulation of miR-146a during T-cell activation. We show that miR-146a is low in human naive T cells and is abundantly expressed in human memory T cells; consistently, miR-146a is induced in human primary T lymphocytes upon T-cell receptor (TCR) stimulation. Moreover, we identified NF-kB and c-ETS binding sites as required for the induction of miR-146a transcription upon TCR engagement. Our results demonstrate that several signaling pathways, other than inflammation, are influenced by miR-146a. In particular, we provide experimental evidence that miR-146a modulates activation-induced cell death (AICD), acting as an antiapoptotic factor, and that Fas-associated death domain (FADD) is a target of miR-146a. Furthermore, miR-146a enforced expression impairs both activator protein 1 (AP-1) activity and interleukin-2 (IL-2) production induced by TCR engagement, thus suggesting a role of this miRNA in the modulation of adaptive immunity.


Subject(s)
Adaptive Immunity/physiology , Gene Expression Regulation/physiology , Interleukin-2/biosynthesis , Lymphocyte Activation/physiology , MicroRNAs/metabolism , T-Lymphocytes/metabolism , Cell Death/physiology , Fas-Associated Death Domain Protein/immunology , Fas-Associated Death Domain Protein/metabolism , Humans , Interleukin-2/immunology , Jurkat Cells , MicroRNAs/immunology , Proto-Oncogene Proteins c-ets/immunology , Proto-Oncogene Proteins c-ets/metabolism , Receptors, Antigen, T-Cell/immunology , Receptors, Antigen, T-Cell/metabolism , Response Elements/physiology , Signal Transduction/physiology , T-Lymphocytes/cytology , T-Lymphocytes/immunology , Transcription Factor AP-1/immunology , Transcription Factor AP-1/metabolism , Transcription, Genetic/physiology
20.
Hum Immunol ; 71(2): 206-11, 2010 Feb.
Article in English | MEDLINE | ID: mdl-19931339

ABSTRACT

miRNAs have recently emerged as key regulators of the immune system, being involved in lymphocyte selection and proliferation, in T(reg) cells differentiation, and in hematopoiesis in general. Rheumatoid arthritis (RA) is an autoimmune pathology the etiology of which is still obscure. Although a multifactorial pathogenesis has been hypothesized, the precise mechanisms leading to the disease are still poorly understood at the molecular level. miRNA expression profile analysis highlighted that miR-223 is the only miRNA that is strikingly deregulated in peripheral T-lymphocytes from RA patients compared with healthy donors. Further analysis by quantitative reverse transcription-polymerase chain analysis confirmed that miR-223 is overexpressed in T-lymphocytes from RA patients (n = 28) compared with healthy donors (n = 10). Moreover, purification of different T-lymphocyte populations from RA patients highlights that miR-223 is expressed at higher levels in naive CD4(+) lymphocytes, whereas its expression is barely detectable in T(h)-17 cells. In summary, our data provide a first characterization of the miRNA expression profiles of peripheral T-lymphocytes of RA patients, identifying miR-223 as overexpressed in CD4(+) naive T-lymphocytes from these individuals. A deeper analysis of the biologic functions and effects of the expression of miR-223 in T-lymphocytes is needed to clarify the exact link between our observation and the disease.


Subject(s)
Arthritis, Rheumatoid/genetics , Gene Expression Profiling , MicroRNAs/biosynthesis , T-Lymphocyte Subsets/immunology , T-Lymphocytes/immunology , Adult , Aged , Aged, 80 and over , Female , Gene Expression , Humans , Male , MicroRNAs/genetics , MicroRNAs/immunology , Middle Aged , Oligonucleotide Array Sequence Analysis , RNA, Messenger/analysis , Reverse Transcriptase Polymerase Chain Reaction , Up-Regulation , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...