Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters











Publication year range
1.
Front Immunol ; 15: 1407237, 2024.
Article in English | MEDLINE | ID: mdl-38947329

ABSTRACT

Introduction: Red blood cells (RBCs), also known as erythrocytes, are underestimated in their role in the immune system. In mammals, erythrocytes undergo maturation that involves the loss of nuclei, resulting in limited transcription and protein synthesis capabilities. However, the nucleated nature of non-mammalian RBCs is challenging this conventional understanding of RBCs. Notably, in bony fishes, research indicates that RBCs are not only susceptible to pathogen attacks but express immune receptors and effector molecules. However, given the abundance of RBCs and their interaction with every physiological system, we postulate that they act in surveillance as sentinels, rapid responders, and messengers. Methods: We performed a series of in vitro experiments with Cyprinus carpio RBCs exposed to Aeromonas hydrophila, as well as in vivo laboratory infections using different concentrations of bacteria. Results: qPCR revealed that RBCs express genes of several inflammatory cytokines. Using cyprinid-specific antibodies, we confirmed that RBCs secreted tumor necrosis factor alpha (TNFα) and interferon gamma (IFNγ). In contrast to these indirect immune mechanisms, we observed that RBCs produce reactive oxygen species and, through transmission electron and confocal microscopy, that RBCs can engulf particles. Finally, RBCs expressed and upregulated several putative toll-like receptors, including tlr4 and tlr9, in response to A. hydrophila infection in vivo. Discussion: Overall, the RBC repertoire of pattern recognition receptors, their secretion of effector molecules, and their swift response make them immune sentinels capable of rapidly detecting and signaling the presence of foreign pathogens. By studying the interaction between a bacterium and erythrocytes, we provide novel insights into how the latter may contribute to overall innate and adaptive immune responses of teleost fishes.


Subject(s)
Aeromonas hydrophila , Carps , Cytokines , Erythrocytes , Fish Diseases , Gram-Negative Bacterial Infections , Animals , Carps/immunology , Carps/microbiology , Erythrocytes/immunology , Erythrocytes/metabolism , Cytokines/metabolism , Cytokines/immunology , Aeromonas hydrophila/immunology , Gram-Negative Bacterial Infections/immunology , Fish Diseases/immunology , Fish Diseases/microbiology , Phagocytosis/immunology , Pathogen-Associated Molecular Pattern Molecules/immunology , Immunity, Innate
2.
Int J Mol Sci ; 25(13)2024 Jul 05.
Article in English | MEDLINE | ID: mdl-39000516

ABSTRACT

The ligands of chemokine receptors 2 and 5 (CCR2 and CCR5, respectively) are associated with the pathomechanism of neuropathic pain development, but their role in painful diabetic neuropathy remains unclear. Therefore, the aim of our study was to examine the function of these factors in the hypersensitivity accompanying diabetes. Additionally, we analyzed the analgesic effect of cenicriviroc (CVC), a dual CCR2/CCR5 antagonist, and its influence on the effectiveness of morphine. An increasing number of experimental studies have shown that targeting more than one molecular target is advantageous compared with the coadministration of individual pharmacophores in terms of their analgesic effect. The advantage of using bifunctional compounds is that they gain simultaneous access to two receptors at the same dose, positively affecting their pharmacokinetics and pharmacodynamics and consequently leading to improved analgesia. Experiments were performed on male and female Swiss albino mice with a streptozotocin (STZ, 200 mg/kg, i.p.) model of diabetic neuropathy. We found that the blood glucose level increased, and the mechanical and thermal hypersensitivity developed on the 7th day after STZ administration. In male mice, we observed increased mRNA levels of Ccl2, Ccl5, and Ccl7, while in female mice, we observed additional increases in Ccl8 and Ccl12 levels. We have demonstrated for the first time that a single administration of cenicriviroc relieves pain to a similar extent in male and female mice. Moreover, repeated coadministration of cenicriviroc with morphine delays the development of opioid tolerance, while the best and longest-lasting analgesic effect is achieved by repeated administration of cenicriviroc alone, which reduces pain hypersensitivity in STZ-exposed mice, and unlike morphine, no tolerance to the analgesic effects of CVC is observed until Day 15 of treatment. Based on these results, we suggest that targeting CCR2 and CCR5 with CVC is a potent therapeutic option for novel pain treatments in diabetic neuropathy patients.


Subject(s)
CCR5 Receptor Antagonists , Diabetic Neuropathies , Disease Models, Animal , Receptors, CCR2 , Receptors, CCR5 , Animals , Mice , Diabetic Neuropathies/drug therapy , Male , Receptors, CCR2/antagonists & inhibitors , Receptors, CCR2/metabolism , Female , Receptors, CCR5/metabolism , Receptors, CCR5/genetics , CCR5 Receptor Antagonists/pharmacology , CCR5 Receptor Antagonists/therapeutic use , Morphine/pharmacology , Morphine/therapeutic use , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/complications , Analgesics/pharmacology , Analgesics/therapeutic use , Hyperalgesia/drug therapy , Imidazoles , Sulfoxides
3.
Front Immunol ; 15: 1330995, 2024.
Article in English | MEDLINE | ID: mdl-38515741

ABSTRACT

Introduction: Stress may pose a serious challenge to immune homeostasis. Stress however also may prepare the immune system for challenges such as wounding or infection, which are likely to happen during a fight or flight stress response. Methods: In common carp (Cyprinus carpio L.) we studied the stress-induced redistribution of neutrophils into circulation, and the expression of genes encoding CXC chemokines known to be involved in the regulation of neutrophil retention (CXCL12) and redistribution (CXCL8), and their receptors (CXCR4 and CXCR1-2, respectively) in blood leukocytes and in the fish hematopoietic organ - the head kidney. The potential involvement of CXC receptors and stress hormone receptors in stress-induced neutrophil redistribution was determined by an in vivo study with selective CXCR inhibitors and antagonists of the receptors involved in stress regulation: glucocorticoid/mineralocorticoid receptors (GRs/MRs), adrenergic receptors (ADRs) and the melanocortin 2 receptor (MC2R). Results: The stress-induced increase of blood neutrophils was accompanied by a neutrophil decrease in the hematopoietic organs. This increase was cortisol-induced and GR-dependent. Moreover, stress upregulated the expression of genes encoding CXCL12 and CXCL8 chemokines, their receptors, and the receptor for granulocytes colony-stimulation factor (GCSFR) and matrix metalloproteinase 9 (MMP9). Blocking of the CXCR4 and CXCR1 and 2 receptors with selective inhibitors inhibited the stress-induced neutrophil redistribution and affected the expression of genes encoding CXC chemokines and CXCRs as well as GCSFR and MMP9. Discussion: Our data demonstrate that acute stress leads to the mobilization of the immune system, characterized by neutrophilia. CXC chemokines and CXC receptors are involved in this stress-induced redistribution of neutrophils from the hematopoietic tissue into the peripheral blood. This phenomenon is directly regulated by interactions between cortisol and the GR/MR. Considering the pivotal importance of neutrophilic granulocytes in the first line of defense, this knowledge is important for aquaculture, but will also contribute to the mechanisms involved in the stress-induced perturbation in neutrophil redistribution as often observed in clinical practice.


Subject(s)
Carps , Neutrophils , Animals , Matrix Metalloproteinase 9/metabolism , Hydrocortisone/pharmacology , Hydrocortisone/metabolism , Granulocytes , Receptors, Chemokine/metabolism
4.
Fish Physiol Biochem ; 50(2): 797-812, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38157099

ABSTRACT

The physiology of ectothermic animals, including fish, is strictly regulated by season-related external factors such as temperature or photoperiod. The immune response and the production of hormones, such as estrogens, are therefore also subject to seasonal changes. This study in common carp aimed to determine how the season affects the estrogen system and the immune response, including the antibacterial response during Aeromonas salmonicida infection. We compared the immune reaction in spring and autumn in the head kidney and liver and found that carp have higher levels of blood 17ß-estradiol in autumn, while in the liver of these fish there is a higher constitutive expression of genes encoding vitellogenin, estrogen receptors and Cyp19 aromatase than in spring. Fish sampled in autumn also exhibited higher expression of immune-related genes in the liver. In contrast, in the head kidney from fish sampled in the autumn, the expression of genes encoding estrogen receptors and aromatase was lower than in spring, and a similar profile of expression was also measured in the head kidney for inos, arginases and il-10. In turn, during bacterial infection, we observed higher upregulation of the expression of inos, il-12p35, ifnγ-2, arginase 2 and il-10 in the liver of carp sampled in spring. In the liver of carp infected in spring a higher upregulation of the expression of the genes encoding CRPs was observed compared to fish infected during autumn. The opposite trend occurred in the head kidney, where the upregulation of the expression of the genes involved in the immune response was higher in fish infected in autumn than in those infected in spring. During the infection, also season-dependent changes occurred in the estrogen system. In conclusion, we demonstrated that season differentially affects the estrogenic and immune activity of the head kidney and liver. These results reinforce our previous findings that the endocrine and immune systems cooperate in maintaining homeostasis and fighting infection.


Subject(s)
Carps , Fish Diseases , Gram-Negative Bacterial Infections , Animals , Interleukin-10 , Seasons , Aromatase/genetics , Aromatase/metabolism , Estrogens/metabolism , Receptors, Estrogen/genetics , Receptors, Estrogen/metabolism , Immunity, Innate , Carps/genetics , Carps/metabolism
5.
Fish Shellfish Immunol ; 127: 647-658, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35803509

ABSTRACT

In an ever-changing environment, an adaptive stress response is the pivotal regulatory mechanism to maintain allostasis. Physiologic responses to stressors enable to overcome potential threat. Glucocorticoid effects can be considered compensatory and adaptive, however prolonged or excessive glucocorticoid secretion can be also maladaptive and detrimental. Therefore, it must be tightly regulated. Apart from the essential hormonal feedback regulation, evidence accrues that cytokines, e.g., proinflammatory interleukin 1ß (IL-1ß), also play an important regulatory role in the stress axis. Here we focused on the potential role of CXC chemokines (CXCL8 and CXCL12) and their receptors (CXCR1, 2 and 4) in the regulation of the stress response in common carp. We studied changes in gene expression of CXC chemokines and CXCRs in the stress axis organs (hypothalamus-pituitary gland-head kidney) upon 11 h of restraint stress and we established how CXCR blocking affects the activation of the stress axis and the synthesis/conversion of cortisol. During restraint stress, gene expression of the majority of the proinflammatory CXCL8 and homeostatic CXCL12 chemokines and their receptors was upregulated in the stress axis organs. Inhibition of CXCR1-2 and CXCR4 differentially affected the expression of genes encoding stress-related molecules: hormones, binding proteins, receptors as well as expression of genes encoding IL-1ß and its receptor. Moreover, we observed that CXC chemokines, via interaction with their respective CXCRs, regulate gene expression of molecules involved in cortisol synthesis and conversion and consistently affect the level of cortisol released into the circulation during the stress response. We revealed that in fish, CXC chemokines and their receptors are important regulators of the stress response at multiple levels of the stress axis, with particularly pronounced effects on steroidogenesis and cortisol conversion in the head kidney.


Subject(s)
Carps , Hydrocortisone , Animals , Carps/genetics , Carps/metabolism , Glucocorticoids , Interleukin-8 , Receptors, Interleukin-8A/genetics
6.
Int J Mol Sci ; 21(23)2020 Nov 25.
Article in English | MEDLINE | ID: mdl-33255713

ABSTRACT

Macrophages are crucial not only for initiation of inflammation and pathogen eradication (classically polarized M1 macrophages), but also for inflammation inhibition and tissue regeneration (alternatively polarized M2 macrophages). Their polarization toward the M1 population occurs under the influence of interferon-γ + lipopolysaccharide (IFN-γ + LPS), while alternatively polarized M2 macrophages evolve upon, e.g., interlukin 4 (IL-4) or cortisol stimulation. This in vitro study focused on a possible role for macrophage-derived cortisol in M1/M2 polarization in common carp. We studied the expression of molecules involved in cortisol synthesis/conversion from and to cortisone like 11ß-hydroxysteroid dehydrogenase type 2 and 3. (11ß-HSD2 and 3) and 11ß-hydroxylase (CYP11b), as well as the expression of glucocorticoid receptors (GRs) and proliferator-activated receptor gamma (PPARγ) in M1 and M2 macrophages. Lastly, we analyzed how inhibition of these molecules affect macrophage polarization. In M1 cells, upregulation of gene expression of GRs and 11ß-HSD3 was found, while, in M2 macrophages, expression of 11ß-hsd2 was upregulated. Moreover, blocking of cortisol synthesis/conversion and GRs or PPARγ induced changes in expression of anti-inflammatory interleukin 10 (IL-10). Consequently, our data show that carp monocytes/macrophages can convert cortisol. The results strongly suggest that cortisol, via intracrine interaction with GRs, is important for IL-10-dependent control of the activity of macrophages and for the regulation of M1/M2 polarization to finally determine the outcome of an infection.


Subject(s)
Carps/metabolism , Hydrocortisone/metabolism , Infections/genetics , Inflammation/genetics , Macrophages/metabolism , Animals , Carps/genetics , Cell Differentiation/genetics , Cell Polarity/genetics , Cortisone/genetics , Cortisone/metabolism , Infections/microbiology , Inflammation/metabolism , Inflammation/pathology , Interferon-gamma/genetics , Lipid Metabolism/genetics , Lipopolysaccharides/metabolism , Macrophage Activation/genetics
7.
Fish Shellfish Immunol ; 107(Pt A): 238-250, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33038508

ABSTRACT

The aquatic environment is massively polluted with endocrine-disrupting compounds (EDCs) including synthetic estrogens (e.g. 17α-ethinylestradiol, EE2) and alkylphenols (e.g. 4-tert-octylphenol, 4t-OP). A major mechanism of action for estrogenic EDCs is their interaction with estrogen receptors and consequently their modulation of the action of enzymes involved in steroid conversion e.g. aromatase CYP19. We now studied the effects of EE2 and 4t-OP on the anti-bacterial immune response of common carp. We investigated effects on the number/composition of inflammatory leukocytes and on the gene expression of mediators that regulate inflammation and EDC binding. In vitro we found that high concentrations of both EE2 and 4t-OP down-regulated IFN-γ2 and IFN-γ-dependent immune responses in LPS-stimulated monocytes/macrophages. Similarly, during bacterial infection in fish, in vivo treated with EE2 and 4t-OP, decreased gene expression of il-12p35 and of ifn-γ2 was found in the focus of inflammation. Moreover, during A. salmonicida-induced infection in EE2-treated carp, but not in fish fed with 4t-OP-treated food, we found an enhanced inflammatory reaction manifested by high number of inflammatory peritoneal leukocytes, including phagocytes and higher expression of pro-inflammatory mediators (inos, il-1ß, cxcl8_l2). Furthermore, in the liver, EE2 down-regulated the expression of acute phase proteins: CRPs and C3. Importantly, both in vitro and in vivo, EDCs altered the expression of estrogen receptors: nuclear (erα and erß) and membrane (gpr30). EDCs also induced up-regulation of the cyp19b gene. Our findings reveal that contamination of the aquatic milieu with estrogenic EDCs, may considerably violate the subtle and particular allostatic interactions between the immune response and endogenous estrogens and this may have negative consequences for fish health.


Subject(s)
Carps/immunology , Endocrine Disruptors/adverse effects , Ethinyl Estradiol/adverse effects , Fish Proteins/immunology , Immunity, Innate , Phenols/adverse effects , Receptors, Estrogen/immunology , Animals , Carps/genetics , Fish Proteins/genetics , Immunity, Innate/drug effects , Receptors, Estrogen/genetics , Water Pollutants, Chemical/adverse effects
8.
Fish Physiol Biochem ; 46(5): 1775-1794, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32519008

ABSTRACT

Inflammation is the evolutionary conserved immune response to harmful stimuli such as pathogens or damaged cells. This multistep process acts by removing injurious stimuli and initiating the healing process. Therefore, it must be tightly regulated by cytokines, chemokines, and enzymes, as well as neuroendocrine mediators. In the present work, we studied the immunoregulatory properties of 17ß-estradiol (E2) in common carp. We determined the in vitro effects of E2 on the activity/polarization of macrophages and the in vivo effects during Aeromonas salmonicida-induced inflammation. In vitro, E2 reduced the lipopolysaccharide (LPS)-stimulated expression of pro- and anti-inflammatory mediator genes but did not change the gene expression of the estrogen receptors and of aromatase CYP19. In contrast, in vivo in the head kidney of A. salmonicida-infected fish, E2-treated feeding induced an upregulation of gene expression of pro-inflammatory (il-12p35 and cxcb2) and anti-inflammatory (arginase 1, arginase 2, il-10, and mmp9) mediators. Moreover, in infected fish fed with E2-treated food, a higher gene expression of the estrogen receptors and of the aromatase CYP19 was found. Our results demonstrate that estrogens can modulate the carp innate immune response, though the in vitro and in vivo effects of this hormone are contrasting. This implies that estradiol not only induces a direct effect on macrophages but rather exerts immunomodulatory actions through indirect mechanisms involving other cellular targets.


Subject(s)
Carps/immunology , Estradiol/pharmacology , Immunity, Innate/drug effects , Inflammation/chemically induced , Lipopolysaccharides/toxicity , Aeromonas salmonicida/physiology , Animal Feed , Animals , Aromatase/genetics , Aromatase/metabolism , Gene Expression Regulation/drug effects , Gram-Negative Bacterial Infections/immunology , Gram-Negative Bacterial Infections/veterinary , Inflammation/metabolism , Macrophages/drug effects , Receptors, Estrogen/genetics , Receptors, Estrogen/metabolism
9.
Fish Shellfish Immunol ; 94: 27-37, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31465876

ABSTRACT

In teleost fish, myelopoiesis is maintained both in the head (HK) and trunk kidney (TK), but only the HK holds the endocrine cells that produce the stress hormone cortisol. We now compared the effects of prolonged restraint stress (in vivo) and cortisol (in vitro) on the polarization of HK and TK-derived carp macrophages. Monocytes/macrophages from both sources were treated in vitro with cortisol, lipopolysaccharide or with both factors combined. In vivo, fish were challenged by a prolonged restraint stress. Gene expression of several markers typical for classical M1 and alternative M2 macrophage polarization, as well as glucocorticoid receptors, were measured. Cells from both sources did not differ in the constitutive gene expression of glucocorticoid receptors, whereas they significantly differed in their response to cortisol and stress. In the LPS-stimulated HK monocytes/macrophages, cortisol in vitro counteracted the action of LPS while the effects of cortisol on the activity of TK monocytes/macrophages were less explicit. In vivo, restraint stress up-regulated gene expression of M2 markers in freshly isolated HK monocytes/macrophages, while at the same time it did not affect TK monocytes/macrophages. Moreover, LPS-stimulated HK monocytes/macrophages from stressed animals showed only minor differences in the gene expression of M1 and M2 markers, compared to LPS-treated monocytes/macrophages from control fish. In contrast, stress-induced changes in TK-derived LPS-treated cells were more pronounced. However, these changes did not clearly indicate whether in TK monocytes/macrophages stress will stimulate classical or alternative polarization. Altogether, our results imply that cortisol in vitro and stress in vivo direct HK, but not TK, monocytes/macrophages to the path of alternative polarization. These findings reveal that like in mammals, also in fish the glucocorticoids form important stimulators of alternative macrophage polarization.


Subject(s)
Annexin A1/administration & dosage , Carps/physiology , Fish Proteins/administration & dosage , Gene Expression/immunology , Hydrocortisone/administration & dosage , Macrophages/immunology , Peptides/administration & dosage , Stress, Physiological/immunology , Animals , Carps/immunology , Inflammation/immunology , Inflammation/veterinary , Macrophages/metabolism
10.
Fish Shellfish Immunol ; 68: 190-201, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28698119

ABSTRACT

Both systemic and locally released steroid hormones, such as cortisol and estrogens, show immunomodulatory actions. This research gives evidence that circulating and leukocyte-derived estrogens can be involved in the regulation of the immune response in common carp, during homeostasis and upon restraining stress. It was found that stress reduced level of blood 17ß-estradiol (E2) and down-regulated the gene expression of components of the "classical" estrogen system: the nuclear estrogen receptors and the aromatase CYP19, in the hypothalamus, the pituitary and in the ovaries. In contrast, higher gene expression of the nuclear estrogen receptors and cyp19a was found in the head kidney of stressed animals. Moreover, stress induced changes in the E2 level and in the estrogen sensitivity at local/leukocyte level. For the first time in fish, we showed the presence of physiologically relevant amounts of E2 and the substrates for its conversion (estrone - E1 and testosterone - T) in head kidney monocytes/macrophages and found that its production is modulated upon stress. Moreover, stress reduced the sensitivity of leukocytes towards estrogens, by down-regulation the expression of the erb and cyp19 genes in carp phagocytes. In contrast, era expression was up-regulated in the head kidney monocytes/macrophages and in PBLs derived from stressed animals. We hypothesize that, the increased expression of ERα, that was observed during stress, can be important for the regulation of leukocyte differentiation, maturation and migration. In conclusion, these results indicate that, in fish, the estrogen network can be actively involved in the regulation of the systemic and local stress response and the immune response.


Subject(s)
Aromatase/genetics , Carps/physiology , Fish Proteins/genetics , Receptors, Estrogen/genetics , Stress, Physiological , Animals , Aromatase/metabolism , Carps/genetics , Carps/immunology , Down-Regulation , Estrogens/metabolism , Fish Proteins/metabolism , Gene Expression Profiling , Head Kidney/immunology , Leukocytes/immunology , Receptors, Estrogen/metabolism , Restraint, Physical
11.
Dev Comp Immunol ; 66: 61-72, 2017 01.
Article in English | MEDLINE | ID: mdl-27062969

ABSTRACT

Estrogens are important for bi-directional neuroendocrine-immune interaction. They act via nuclear estrogen receptors (ERα and ERß) and/or G-protein coupled receptor - GPR30. We found expression of ERα, ERß and GPR30 in carp lymphoid tissues and head kidney monocytes/macrophages, neutrophils and lymphocytes. Interestingly, ERß is also expressed in some head kidney lymphocytes but not in naive PBLs. Immune stimulation altered the cell type specific profile of expression of these receptors, which depends on both activation and maturation stage. This implies direct leukocyte responsiveness to estrogen stimulation and therefore in vitro effects of 17ß-estradiol (E2) on reactive oxygen species (ROS) production in monocytes/macrophages were determined. Short-time incubation with E2 increased ROS production in PMA-stimulated cells. Results comply with mediation by GPR30, partially functioning via phosphoinositide 3-kinase activation. These results furthermore demonstrate that neuroendocrine-immune communication via estrogen receptors is evolutionary conserved.


Subject(s)
Carps/immunology , Estrogen Receptor alpha/metabolism , Estrogen Receptor beta/metabolism , Fish Proteins/metabolism , Leukocytes/immunology , Neurosecretory Systems , Receptors, G-Protein-Coupled/metabolism , Animals , Biological Evolution , Cells, Cultured , Estradiol/immunology , Immunomodulation , Lymphocyte Activation , Neuroimmunomodulation/immunology , Reactive Oxygen Species/metabolism
12.
Horm Behav ; 88: 15-24, 2017 02.
Article in English | MEDLINE | ID: mdl-27760301

ABSTRACT

Clinical and experimental evidence shows that estrogens affect immunity in mammals. Less is known about this interaction in the evolutionary older, non-mammalian, vertebrates. Fish form an excellent model to identify evolutionary conserved neuroendocrine-immune interactions: i) they are the earliest vertebrates with fully developed innate and adaptive immunity, ii) immune and endocrine parameters vary with season, and iii) physiology is constantly disrupted by increasing contamination of the aquatic environment. Neuro-immuno-endocrine interactions enable adaption to changing internal and external environment and are based on shared signaling molecules and receptors. The presence of specific estrogen receptors on/in fish leukocytes, implies direct estrogen-mediated immunoregulation. Fish leukocytes most probably are also capable to produce estrogens as they express the cyp19a and cyp19b - genes, encoding aromatase cytochrome P450, the enzyme critical for conversion of C19 steroids to estrogens. Immunoregulatory actions of estrogens, vary among animal species, and also with dose, target cell type, or physiological condition (e.g., infected/non-infected, reproductive status). They moreover are multifaceted. Interestingly, season-dependent changes in immune status correlate with changes in the levels of circulating sex hormones. Whereas E2 circulating in the bloodstream is perhaps the most likely candidate to be the physiological mediator of systemic immune-reproductive trade-offs, leukocyte-derived hormones are hypothesized to be mainly involved in local tuning of the immune response. Contamination of the aquatic environment with estrogenic EDCs may violate the delicate and precise allostatic interactions between the endogenous estrogen system and the immune system. This has negative effects on fish health, but will also affect the physiology of its consumers.


Subject(s)
Adaptation, Physiological/physiology , Aromatase/metabolism , Estrogens/metabolism , Fishes/physiology , Immune System/metabolism , Seasons , Animals , Female , Humans , Neurosecretory Systems/metabolism , Receptors, Estrogen/metabolism , Reproduction/physiology
SELECTION OF CITATIONS
SEARCH DETAIL