Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Burns ; 42(6): 1350-6, 2016 Sep.
Article in English | MEDLINE | ID: mdl-27325216

ABSTRACT

There have been concerns that fire-derived acid gases could aggravate thermal burns for individuals wearing synthetic flame retardant garments. A comparative risk assessment was performed on three commercial flame retardant materials with regard to relative hazards associated with acidic combustion gases to skin during a full engulfment flash fire event. The tests were performed in accordance with ASTM F1930 and ISO 13506: Standard Test Method for Evaluation of Flame Resistant Clothing for Protection against Fire Simulations Using an Instrumented Manikin. Three fire retardant textiles were tested: an FR treated cotton/nylon blend, a low Protex(®) modacrylic blend, and a medium Protex(®) modacrylic blend. The materials, in the form of whole body coveralls, were subjected to propane-fired flash conditions of 84kW/m(2) in a full sized simulator for a duration of either 3 or 4s. Ion traps consisting of wetted sodium carbonate-impregnated cellulose in Teflon holders were placed on the chest and back both above and under the standard undergarments. The ion traps remained in position from the time of ignition until 5min post ignition. Results indicated that acid deposition did increase with modacrylic content from 0.9µmol/cm(2) for the cotton/nylon, to 12µmol/cm(2) for the medium modacrylic blend. The source of the acidity was dominated by hydrogen chloride. Discoloration was inversely proportional to the amount of acid collected on the traps. A risk assessment was performed on the potential adverse impact of acid gases on both the skin and open wounds. The results indicated that the deposition and dissolution of the acid gases in surficial fluid media (perspiration and blood plasma) resulted in an increase in acidity, but not sufficient to induce irritation/skin corrosion or to cause necrosis in open third degree burns.


Subject(s)
Burns, Chemical/etiology , Fires , Flame Retardants/adverse effects , Gases/adverse effects , Hydrochloric Acid/adverse effects , Protective Clothing/adverse effects , Textiles/adverse effects , Burns , Humans , Risk Assessment
2.
Integr Environ Assess Manag ; 2(3): 293-8, 2006 Jul.
Article in English | MEDLINE | ID: mdl-16869443

ABSTRACT

The term "nanomaterial" describes a preparation in which the particle size is on the order of 10 to 100 nm in diameter. Such particles have the ability to form suspensions in fluid media such as air and water that can dramatically increase the environmental transport potential in comparision with like materials of larger particle sizes. Quantifying such transport requires an ability to predict the stability of such suspensions as to their tendency to aggregate or interact with other environmental constituents. In this paper, we present a method for predicting the magnitude and uncertainty associated with nanoparticle suspension stability. The critical buoyancy properties are predicted using the Boltzmann equation. The rates of aggregation are then predicted on the basis of molecular collision and adhesion coefficients. The progress of particle growth is simulated across all potential pathways probabalistically using the Gillespie model to characterize the uncertainty. Discussion is provided regarding potential environmental applications and further potential development in predicting particle behavior and effects on the environment.


Subject(s)
Models, Theoretical , Nanoparticles , Particle Size , Suspensions , Water/chemistry , Water Pollutants, Chemical
SELECTION OF CITATIONS
SEARCH DETAIL
...