Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Sol Phys ; 292(2): 38, 2017.
Article in English | MEDLINE | ID: mdl-32269394

ABSTRACT

On 29 March 2014, NOAA Active Region (AR) 12017 produced an X1 flare that was simultaneously observed by an unprecedented number of observatories. We have investigated the pre-flare period of this flare from 14:00 UT until 19:00 UT using joint observations made by the Interface Region Imaging Spectrometer (IRIS) and the Hinode Extreme Ultraviolet Imaging Spectrometer (EIS). Spectral lines providing coverage of the solar atmosphere from the chromosphere to the corona were analysed to investigate pre-flare activity within the AR. The results of the investigation have revealed evidence of strongly blue-shifted plasma flows, with velocities up to 200 km s - 1 , being observed 40 minutes prior to flaring. These flows are located along the filament present in the active region and are both spatially discrete and transient. In order to constrain the possible explanations for this activity, we undertake non-potential magnetic field modelling of the active region. This modelling indicates the existence of a weakly twisted flux rope along the polarity inversion line in the region where a filament and the strong pre-flare flows are observed. We then discuss how these observations relate to the current models of flare triggering. We conclude that the most likely drivers of the observed activity are internal reconnection in the flux rope, early onset of the flare reconnection, or tether-cutting reconnection along the filament.

2.
J Biomol Struct Dyn ; 4(3): 491-500, 1986 Dec.
Article in English | MEDLINE | ID: mdl-2482752

ABSTRACT

In recent theoretical molecular dynamics studies of ion solvation and transport through the model peptide ionophore, gramicidin A, it has been observed that the waters forming a linear single file within the channel have solvation and dynamic properties quite different from those found in bulk water. Strongly correlated motions among the interior single file column of waters persist over 20 A. A speculation is entertained that related water structures could provide a mechanism for long range enzymatic allosteric effects as an alternative to chemical action at a distance propagated through the protein itself. Two possible specific mechanisms are discussed, hydraulic and "proton wire". As a further control mechanism, the possibility is considered of modulating the allosteric effect though protein motion to open or close the channel thus producing a "valve" in the hydraulic line or a "switch" in the proton wire.


Subject(s)
Allosteric Regulation , Ionophores , Water , Gramicidin , Models, Molecular , Protein Conformation
3.
Biophys J ; 46(2): 229-48, 1984 Aug.
Article in English | MEDLINE | ID: mdl-6206901

ABSTRACT

Molecular dynamics calculations in which all atoms were allowed to move were performed on a water-filled ion channel of the polypeptide dimer gramicidin A (approximately 600 atoms total) in the head-to-head Urry model conformation. Comparisons were made among nine simulations in which four different ions (lithium, sodium, potassium, and cesium) were each placed at two different locations in the channel as well as a reference simulation with only water present. Each simulation lasted for 5 ps and was carried out at approximately 300 K. The structure and dynamics of the peptide and interior waters were found to depend strongly on the ion tested and upon its location along the pore. Speculations on the solution and diffusion of ions in gramicidin are offered based on the observations in our model that smaller ions tended to lie off axis and to distort the positions of the carbonyl oxygens more to achieve proper solvation and that the monomer-monomer junction was more distortable than the center of the monomer. With the potential energy surface used, the unique properties of the linear chain of interior water molecules were found to be important for optimal solvation of the various ions. Strongly correlated motions persisting over 25 A among the waters in the interior single-file column were observed.


Subject(s)
Gramicidin , Ion Channels/physiology , Models, Biological , Cations , Kinetics , Mathematics , Models, Molecular , Protein Conformation
SELECTION OF CITATIONS
SEARCH DETAIL
...