Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Cancer Ther ; 21(6): 925-935, 2022 06 01.
Article in English | MEDLINE | ID: mdl-35405742

ABSTRACT

Anaplastic thyroid cancer (ATC) is among the most aggressive of human cancers, and currently there are few effective treatments for most patients. YM155, first identified as a survivin inhibitor, was highlighted in a high-throughput screen performed by the National Cancer Institute, killing ATC cells in vitro and in vivo. However, there was no association between survivin expression and response to YM155 in clinical trials, and YM155 has been mostly abandoned for development despite favorable pharmacokinetic and toxicity profiles. Currently, alternative mechanisms are being explored for YM155 by a number of groups. In this study, ATC patient samples show overexpression of topoisomerase Top2α compared with benign thyroid samples and to differentiated thyroid cancers. ATC cell lines that overexpress Top2α are more sensitive to YM155. We created a YM155-resistant cell line, which shows decreased expression of Top2α and is resensitized with Top2α overexpression. Molecular modeling predicts binding for YM155 in the Top2α ATP-binding site and identifies key amino acids for YM155-Top2α interaction. A Top2α mutant abrogates the effect of YM155, confirming the contribution of Top2α to YM155 mechanism of action. Our results suggest a novel mechanism of action for YM155 and may represent a new therapeutic approach for the treatment of ATC.


Subject(s)
Imidazoles/pharmacology , Naphthoquinones/pharmacology , Thyroid Carcinoma, Anaplastic , Thyroid Neoplasms , Adenosine Triphosphate , Apoptosis , Binding Sites , Cell Death , Cell Line, Tumor , DNA Damage , Humans , Inhibitor of Apoptosis Proteins/metabolism , Survivin/metabolism , Thyroid Carcinoma, Anaplastic/drug therapy , Thyroid Carcinoma, Anaplastic/genetics
2.
Front Physiol ; 12: 642353, 2021.
Article in English | MEDLINE | ID: mdl-33868006

ABSTRACT

INTRODUCTION: The COVID-19 pandemic has revealed an immense, unmet and international need for available ventilators. Both clinical and engineering groups around the globe have responded through the development of "homemade" or do-it-yourself (DIY) ventilators. Several designs have been prototyped, tested, and shared over the internet. However, many open source DIY ventilators require extensive familiarity with microcontroller programming and electronics assembly, which many healthcare providers may lack. In light of this, we designed and bench tested a low-cost, pressure-controlled mechanical ventilator that is "plug and play" by design, where no end-user microcontroller programming is required. This Fast-AssembLy COVID-Nineteen (FALCON) emergency prototype ventilator can be rapidly assembled and could be readily modified and improved upon to potentially provide a ventilatory option when no other is present, especially in low- and middle-income countries. HYPOTHESIS: We anticipated that a minimal component prototype ventilator could be easily assembled that could reproduce pressure/flow waveforms and tidal volumes similar to a hospital grade ventilator (Engström CarestationTM). MATERIALS AND METHODS: We benched-tested our prototype ventilator using an artificial test lung under 36 test conditions with varying respiratory rates, peak inspiratory pressures (PIP), positive end expiratory pressures (PEEP), and artificial lung compliances. Pressure and flow waveforms were recorded, and tidal volumes calculated with prototype ventilator performance compared to a hospital-grade ventilator (Engström CarestationTM) under identical test conditions. RESULTS: Pressure and flow waveforms produced by the prototype ventilator were highly similar to the CarestationTM. The ventilator generated consistent PIP/PEEP, with tidal volume ranges similar to the CarestationTM. The FALCON prototype was tested continuously for a 5-day period without failure or significant changes in delivered PIP/PEEP. CONCLUSION: The FALCON prototype ventilator is an inexpensive and easily-assembled "plug and play" emergency ventilator design. The FALCON ventilator is currently a non-certified prototype that, following further appropriate validation and testing, might eventually be used as a life-saving emergency device in extraordinary circumstances when more sophisticated forms of ventilation are unavailable.

3.
Int J Mol Sci ; 22(4)2021 Feb 16.
Article in English | MEDLINE | ID: mdl-33669447

ABSTRACT

Anaplastic thyroid cancer (ATC) is one of the most lethal malignancies with a median survival time of about 4 months. Currently, there is no effective treatment, and the development of new therapies is an important and urgent issue for ATC patients. YM155 is a small molecule that was identified as the top candidate in a high-throughput screen of small molecule inhibitors performed against a panel of ATC cell lines by the National Cancer Institute. However, there were no follow-up studies investigating YM155 in ATC. Here, we determined the effects of YM155 on ATC and human primary benign thyroid cell (PBTC) survival with alamarBlue assay. Our data show that YM155 inhibited proliferation of ATC cell lines while sparing normal thyroid cells, suggesting a high therapeutic window. YM155-induced DNA damage was detected by measuring phosphorylation of γ-H2AX as a marker for DNA double-strand breaks. The formamidopyrimidine-DNA glycosylase (FPG)-modified alkaline comet assay in conjunction with reactive oxygen species (ROS) assay and glutathione (GSH)/glutathione (GSSG) assay suggests that YM155-mediated oxidative stress contributes to DNA damage. In addition, we provide evidence that YM155 causes cell cycle arrest in S phase and in the G2/M transition and causes apoptosis, as seen with flow cytometry. In this study, we show for the first time the multiple effects of YM155 in ATC cells, furthering a potential therapeutic approach for ATC.


Subject(s)
Apoptosis/drug effects , Cell Cycle Checkpoints/drug effects , DNA Damage/drug effects , Imidazoles/pharmacology , Naphthoquinones/pharmacology , Oxidative Stress/drug effects , Thyroid Carcinoma, Anaplastic/metabolism , Thyroid Neoplasms/metabolism , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Humans , Reactive Oxygen Species/metabolism , Signal Transduction/drug effects , Thyroid Carcinoma, Anaplastic/pathology , Thyroid Gland/cytology , Thyroid Gland/drug effects , Thyroid Neoplasms/pathology
4.
J Appl Physiol (1985) ; 120(8): 876-88, 2016 Apr 15.
Article in English | MEDLINE | ID: mdl-26796753

ABSTRACT

Skeletal muscle-specific liver kinase B1 (LKB1) knockout mice (skmLKB1-KO) exhibit elevated mitogen-activated protein kinase (MAPK) signaling after treadmill running. MAPK activation is also associated with inflammation-related signaling in skeletal muscle. Since exercise can induce muscle damage, and inflammation is a response triggered by damaged tissue, we therefore hypothesized that LKB1 plays an important role in dampening the inflammatory response to muscle contraction, and that this may be due in part to increased susceptibility to muscle damage with contractions in LKB1-deficient muscle. Here we studied the inflammatory response and muscle damage with in situ muscle contraction or downhill running. After in situ muscle contractions, the phosphorylation of both NF-κB and STAT3 was increased more in skmLKB1-KO vs. wild-type (WT) muscles. Analysis of gene expression via microarray and RT-PCR shows that expression of many inflammation-related genes increased after contraction only in skmLKB1-KO muscles. This was associated with mild skeletal muscle fiber membrane damage in skmLKB1-KO muscles. Gene markers of oxidative stress were also elevated in skmLKB1-KO muscles after contraction. Using the downhill running model, we observed significantly more muscle damage after running in skmLKB1-KO mice, and this was associated with greater phosphorylation of both Jnk and STAT3 and increased expression of SOCS3 and Fos. In conclusion, we have shown that the lack of LKB1 in skeletal muscle leads to an increased inflammatory state in skeletal muscle that is exacerbated by muscle contraction. Increased susceptibility of the muscle to damage may underlie part of this response.


Subject(s)
Gene Expression/genetics , Inflammation/genetics , Muscle Contraction/genetics , Muscle Fibers, Skeletal/metabolism , Protein Serine-Threonine Kinases/metabolism , AMP-Activated Protein Kinases , Animals , Exercise Test/methods , Female , Inflammation/metabolism , Male , Mice , Mice, Knockout , Mitogen-Activated Protein Kinases/genetics , Mitogen-Activated Protein Kinases/metabolism , NF-kappa B/genetics , NF-kappa B/metabolism , Oxidative Stress/genetics , Phosphorylation/genetics , Physical Conditioning, Animal/physiology , Protein Serine-Threonine Kinases/genetics , Running/physiology , STAT3 Transcription Factor/genetics , STAT3 Transcription Factor/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...