Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
2.
Elife ; 52016 05 23.
Article in English | MEDLINE | ID: mdl-27213517

ABSTRACT

Mutation and natural selection shape the genetic variation in natural populations. Here, we directly estimated the spontaneous mutation rate by sequencing new Drosophila mutation accumulation lines maintained with minimal natural selection. We inferred strong stabilizing natural selection on quantitative traits because genetic variation among wild-derived inbred lines was much lower than predicted from a neutral model and the mutational effects were much larger than allelic effects of standing polymorphisms. Stabilizing selection could act directly on the traits, or indirectly from pleiotropic effects on fitness. However, our data are not consistent with simple models of mutation-stabilizing selection balance; therefore, further empirical work is needed to assess the balance of evolutionary forces responsible for quantitative genetic variation.


Subject(s)
Drosophila/genetics , Genetic Variation , Mutation Rate , Animals , Mutation Accumulation , Quantitative Trait Loci , Selection, Genetic
3.
Genome Med ; 6(6): 124, 2014.
Article in English | MEDLINE | ID: mdl-25031624

ABSTRACT

EDITORIAL SUMMARY: Epistasis has been dismissed by some as having little role in the genetic architecture of complex human disease. The authors argue that this view is the result of a misconception and explain why exploring epistasis is likely to be crucial to understanding and predicting complex disease.

4.
BMC Genomics ; 11: 297, 2010 May 11.
Article in English | MEDLINE | ID: mdl-20459830

ABSTRACT

BACKGROUND: Obesity and phenotypic traits associated with this condition exhibit significant heritability in natural populations of most organisms. While a number of genes and genetic pathways have been implicated to play a role in obesity associated traits, the genetic architecture that underlies the natural variation in these traits is largely unknown. Here, we used 40 wild-derived inbred lines of Drosophila melanogaster to quantify genetic variation in body weight, the content of three major metabolites (glycogen, triacylglycerol, and glycerol) associated with obesity, and metabolic rate in young flies. We chose these lines because they were previously screened for variation in whole-genome transcript abundance and in several adult life-history traits, including longevity, resistance to starvation stress, chill-coma recovery, mating behavior, and competitive fitness. This enabled us not only to identify candidate genes and transcriptional networks that might explain variation for energy metabolism traits, but also to investigate the genetic interrelationships among energy metabolism, behavioral, and life-history traits that have evolved in natural populations. RESULTS: We found significant genetically based variation in all traits. Using a genome-wide association screen for single feature polymorphisms and quantitative trait transcripts, we identified 337, 211, 237, 553, and 152 novel candidate genes associated with body weight, glycogen content, triacylglycerol storage, glycerol levels, and metabolic rate, respectively. Weighted gene co-expression analyses grouped transcripts associated with each trait in significant modules of co-expressed genes and we interpreted these modules in terms of their gene enrichment based on Gene Ontology analysis. Comparison of gene co-expression modules for traits in this study with previously determined modules for life-history traits identified significant modular pleiotropy between glycogen content, body weight, competitive fitness, and starvation resistance. CONCLUSIONS: Combining a large phenotypic dataset with information on variation in genome wide transcriptional profiles has provided insight into the complex genetic architecture underlying natural variation in traits that have been associated with obesity. Our findings suggest that understanding the maintenance of genetic variation in metabolic traits in natural populations may require that we understand more fully the degree to which these traits are genetically correlated with other traits, especially those directly affecting fitness.


Subject(s)
Drosophila melanogaster/genetics , Drosophila melanogaster/metabolism , Energy Metabolism , Animals , Body Weight , Gene Expression , Genome-Wide Association Study , Quantitative Trait Loci , Transcription, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL
...