Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
Add more filters










Publication year range
1.
BMC Genomics ; 25(1): 371, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38627676

ABSTRACT

BACKGROUND: X-chromosome inactivation (XCI) is an epigenetic process that occurs during early development in mammalian females by randomly silencing one of two copies of the X chromosome in each cell. The preferential inactivation of either the maternal or paternal copy of the X chromosome in a majority of cells results in a skewed or non-random pattern of X inactivation and is observed in over 25% of adult females. Identifying skewed X inactivation is of clinical significance in patients with suspected rare genetic diseases due to the possibility of biased expression of disease-causing genes present on the active X chromosome. The current clinical test for the detection of skewed XCI relies on the methylation status of the methylation-sensitive restriction enzyme (Hpall) binding site present in proximity of short tandem polymorphic repeats on the androgen receptor (AR) gene. This approach using one locus results in uninformative or inconclusive data for 10-20% of tests. Further, recent studies have shown inconsistency between methylation of the AR locus and the state of inactivation of the X chromosome. Herein, we develop a method for estimating X inactivation status, using exome and transcriptome sequencing data derived from blood in 227 female samples. We built a reference model for evaluation of XCI in 135 females from the GTEx consortium. We tested and validated the model on 11 female individuals with different types of undiagnosed rare genetic disorders who were clinically tested for X-skew using the AR gene assay and compared results to our outlier-based analysis technique. RESULTS: In comparison to the AR clinical test for identification of X inactivation, our method was concordant with the AR method in 9 samples, discordant in 1, and provided a measure of X inactivation in 1 sample with uninformative clinical results. We applied this method on an additional 81 females presenting to the clinic with phenotypes consistent with different hereditary disorders without a known genetic diagnosis. CONCLUSIONS: This study presents the use of transcriptome and exome sequencing data to provide an accurate and complete estimation of X-inactivation and skew status in a cohort of female patients with different types of suspected rare genetic disease.


Subject(s)
Exome , X Chromosome Inactivation , Adult , Humans , Female , Transcriptome , Exome Sequencing , Chromosomes, Human, X/genetics
2.
Hum Genet ; 143(5): 649-666, 2024 May.
Article in English | MEDLINE | ID: mdl-38538918

ABSTRACT

Most rare disease patients (75-50%) undergoing genomic sequencing remain unsolved, often due to lack of information about variants identified. Data review over time can leverage novel information regarding disease-causing variants and genes, increasing this diagnostic yield. However, time and resource constraints have limited reanalysis of genetic data in clinical laboratories setting. We developed RENEW, (REannotation of NEgative WES/WGS) an automated reannotation procedure that uses relevant new information in on-line genomic databases to enable rapid review of genomic findings. We tested RENEW in an unselected cohort of 1066 undiagnosed cases with a broad spectrum of phenotypes from the Mayo Clinic Center for Individualized Medicine using new information in ClinVar, HGMD and OMIM between the date of previous analysis/testing and April of 2022. 5741 variants prioritized by RENEW were rapidly reviewed by variant interpretation specialists. Mean analysis time was approximately 20 s per variant (32 h total time). Reviewed cases were classified as: 879 (93.0%) undiagnosed, 63 (6.6%) putatively diagnosed, and 4 (0.4%) definitively diagnosed. New strategies are needed to enable efficient review of genomic findings in unsolved cases. We report on a fast and practical approach to address this need and improve overall diagnostic success in patient testing through a recurrent reannotation process.


Subject(s)
Genomics , Humans , Genomics/methods , Exome/genetics , Exome Sequencing/methods , Databases, Genetic , Genetic Testing/methods , Genome, Human , Whole Genome Sequencing/methods , Phenotype
3.
Neurooncol Adv ; 6(1): vdad163, 2024.
Article in English | MEDLINE | ID: mdl-38213835

ABSTRACT

Retinoblastoma is an ocular cancer associated with genomic variation in the RB1 gene. In individuals with bilateral retinoblastoma, a germline variant in RB1 is identified in virtually all cases. We describe herein an individual with bilateral retinoblastoma for whom multiple clinical lab assays performed by outside commercial laboratories failed to identify a germline RB1 variant. Paired tumor/normal exome sequencing, long-read whole genome sequencing, and long-read isoform sequencing was performed on a translational research basis ultimately identified a germline likely de novo Long Interspersed Nuclear Element (LINE)-1 mediated deletion resulting in a premature stop of translation of RB1 as the underlying genetic cause of retinoblastoma in this individual. Based on these research findings, the LINE-1 mediated deletion was confirmed via Sanger sequencing in our clinical laboratory, and results were reported in the patient's medical record to allow for appropriate genetic counseling.

4.
Am J Hum Genet ; 110(5): 774-789, 2023 05 04.
Article in English | MEDLINE | ID: mdl-37054711

ABSTRACT

The Integrator complex is a multi-subunit protein complex that regulates the processing of nascent RNAs transcribed by RNA polymerase II (RNAPII), including small nuclear RNAs, enhancer RNAs, telomeric RNAs, viral RNAs, and protein-coding mRNAs. Integrator subunit 11 (INTS11) is the catalytic subunit that cleaves nascent RNAs, but, to date, mutations in this subunit have not been linked to human disease. Here, we describe 15 individuals from 10 unrelated families with bi-allelic variants in INTS11 who present with global developmental and language delay, intellectual disability, impaired motor development, and brain atrophy. Consistent with human observations, we find that the fly ortholog of INTS11, dIntS11, is essential and expressed in the central nervous systems in a subset of neurons and most glia in larval and adult stages. Using Drosophila as a model, we investigated the effect of seven variants. We found that two (p.Arg17Leu and p.His414Tyr) fail to rescue the lethality of null mutants, indicating that they are strong loss-of-function variants. Furthermore, we found that five variants (p.Gly55Ser, p.Leu138Phe, p.Lys396Glu, p.Val517Met, and p.Ile553Glu) rescue lethality but cause a shortened lifespan and bang sensitivity and affect locomotor activity, indicating that they are partial loss-of-function variants. Altogether, our results provide compelling evidence that integrity of the Integrator RNA endonuclease is critical for brain development.


Subject(s)
Drosophila Proteins , Nervous System Diseases , Adult , Animals , Humans , Drosophila/genetics , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Mutation/genetics , RNA, Messenger
6.
Mol Genet Genomic Med ; 10(7): e1966, 2022 07.
Article in English | MEDLINE | ID: mdl-35570467

ABSTRACT

BACKGROUND: Achalasia-addisonianism-alacrima syndrome, frequently referred to as Allgrove syndrome or Triple A syndrome, is a multisystem disorder resulting from homozygous or compound heterozygous pathogenic variants in the gene encoding aladin (AAAS). Aladin is a member of the WD-repeat family of proteins and is a component of the nuclear pore complex. It is thought to be involved in nuclear import and export of molecules. Here, we describe an individual with a paternally inherited truncating variant and a maternally inherited, novel missense variant in AAAS presenting with alacrima, achalasia, anejaculation, optic atrophy, muscle weakness, dysarthria, and autonomic dysfunction. METHODS: Whole-exome sequencing was performed in the proband, sister, and parents. Variants were confirmed by Sanger sequencing. The localization of aladin to the nuclear pore was assessed in cells expressing the patient variant. RESULTS: Functional testing of the maternally inherited variant, p.(Arg270Pro), demonstrated decreased localization of aladin to the nuclear pore in cells expressing the variant, indicating a deleterious effect. Follow-up testing in the proband's affected sister revealed that she also inherited the biallelic AAAS variants. CONCLUSIONS: Review of the patient's clinical, pathological, and genetic findings resulted in a diagnosis of Triple A syndrome.


Subject(s)
Adrenal Insufficiency , Esophageal Achalasia , Adrenal Insufficiency/genetics , Esophageal Achalasia/genetics , Female , Humans , Nerve Tissue Proteins/genetics , Nuclear Pore Complex Proteins/genetics
7.
Lab Med ; 53(4): e87-e90, 2022 Jul 04.
Article in English | MEDLINE | ID: mdl-34791328

ABSTRACT

The detection of recurrent genetic abnormalities in acute myeloid leukemia (AML), including RUNX1T1/RUNX1 gene fusion, is critical for optimal medical management. Herein, we report a 45 year old woman with newly diagnosed AML and conventional chromosome studies that revealed an apparently balanced t(8;20)(q22;p13) in all 20 metaphases analyzed. A RUNX1T1/RUNX1 dual-color dual-fusion fluorescence in situ hybridization (FISH) probe set was subsequently performed and revealed a RUNX1T1/RUNX1 gene fusion. Metaphase FISH studies performed on abnormal metaphases revealed a cryptic, complex translocation resulting in RUNX1T1/RUNX1 fusion, t(8;20;21)(q22;p13;q22). This case study shows the importance of performing FISH studies or other high-resolution genetic testing concurrently with conventional chromosome studies for the detection of cryptic recurrent gene fusions in AML, particularly a focused genetic evaluation such as RUNX1T1/RUNX1 gene fusion, when specific abnormalities involving 8q22 are identified.


Subject(s)
Core Binding Factor Alpha 2 Subunit , Leukemia, Myeloid, Acute , Core Binding Factor Alpha 2 Subunit/genetics , Gene Fusion , Humans , In Situ Hybridization, Fluorescence , Leukemia, Myeloid, Acute/diagnosis , Leukemia, Myeloid, Acute/genetics , RUNX1 Translocation Partner 1 Protein/genetics , Translocation, Genetic/genetics
8.
Brain Sci ; 11(7)2021 Jul 14.
Article in English | MEDLINE | ID: mdl-34356165

ABSTRACT

In humans, de novo truncating variants in WASF1 (Wiskott-Aldrich syndrome protein family member 1) have been linked to presentations of moderate-to-profound intellectual disability (ID), autistic features, and epilepsy. Apart from one case series, there is limited information on the phenotypic spectrum and genetic landscape of WASF1-related neurodevelopmental disorder (NDD). In this report, we describe detailed clinical characteristics of six individuals with WASF1-related NDD. We demonstrate a broader spectrum of neurodevelopmental impairment including more mildly affected individuals. Further, we report new variant types, including a copy number variant (CNV), resulting in the partial deletion of WASF1 in monozygotic twins, and three missense variants, two of which alter the same residue, p.W161. This report adds further evidence that de novo variants in WASF1 cause an autosomal dominant NDD.

9.
Am J Hum Genet ; 108(9): 1669-1691, 2021 09 02.
Article in English | MEDLINE | ID: mdl-34314705

ABSTRACT

Transportin-2 (TNPO2) mediates multiple pathways including non-classical nucleocytoplasmic shuttling of >60 cargoes, such as developmental and neuronal proteins. We identified 15 individuals carrying de novo coding variants in TNPO2 who presented with global developmental delay (GDD), dysmorphic features, ophthalmologic abnormalities, and neurological features. To assess the nature of these variants, functional studies were performed in Drosophila. We found that fly dTnpo (orthologous to TNPO2) is expressed in a subset of neurons. dTnpo is critical for neuronal maintenance and function as downregulating dTnpo in mature neurons using RNAi disrupts neuronal activity and survival. Altering the activity and expression of dTnpo using mutant alleles or RNAi causes developmental defects, including eye and wing deformities and lethality. These effects are dosage dependent as more severe phenotypes are associated with stronger dTnpo loss. Interestingly, similar phenotypes are observed with dTnpo upregulation and ectopic expression of TNPO2, showing that loss and gain of Transportin activity causes developmental defects. Further, proband-associated variants can cause more or less severe developmental abnormalities compared to wild-type TNPO2 when ectopically expressed. The impact of the variants tested seems to correlate with their position within the protein. Specifically, those that fall within the RAN binding domain cause more severe toxicity and those in the acidic loop are less toxic. Variants within the cargo binding domain show tissue-dependent effects. In summary, dTnpo is an essential gene in flies during development and in neurons. Further, proband-associated de novo variants within TNPO2 disrupt the function of the encoded protein. Hence, TNPO2 variants are causative for neurodevelopmental abnormalities.


Subject(s)
Developmental Disabilities/genetics , Drosophila Proteins/genetics , Eye Diseases, Hereditary/genetics , Intellectual Disability/genetics , Karyopherins/genetics , Musculoskeletal Abnormalities/genetics , beta Karyopherins/genetics , ran GTP-Binding Protein/genetics , Alleles , Amino Acid Sequence , Animals , Developmental Disabilities/metabolism , Developmental Disabilities/pathology , Drosophila Proteins/antagonists & inhibitors , Drosophila Proteins/metabolism , Drosophila melanogaster/genetics , Drosophila melanogaster/growth & development , Drosophila melanogaster/metabolism , Eye Diseases, Hereditary/metabolism , Eye Diseases, Hereditary/pathology , Female , Gene Dosage , Gene Expression Regulation, Developmental , Genome, Human , Humans , Infant , Infant, Newborn , Intellectual Disability/metabolism , Intellectual Disability/pathology , Karyopherins/antagonists & inhibitors , Karyopherins/metabolism , Male , Musculoskeletal Abnormalities/metabolism , Musculoskeletal Abnormalities/pathology , Mutation , Neurons/metabolism , Neurons/pathology , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , Sequence Alignment , Sequence Homology, Amino Acid , Whole Genome Sequencing , beta Karyopherins/metabolism , ran GTP-Binding Protein/metabolism
10.
Am J Hum Genet ; 108(3): 502-516, 2021 03 04.
Article in English | MEDLINE | ID: mdl-33596411

ABSTRACT

Deletion 1p36 (del1p36) syndrome is the most common human disorder resulting from a terminal autosomal deletion. This condition is molecularly and clinically heterogeneous. Deletions involving two non-overlapping regions, known as the distal (telomeric) and proximal (centromeric) critical regions, are sufficient to cause the majority of the recurrent clinical features, although with different facial features and dysmorphisms. SPEN encodes a transcriptional repressor commonly deleted in proximal del1p36 syndrome and is located centromeric to the proximal 1p36 critical region. Here, we used clinical data from 34 individuals with truncating variants in SPEN to define a neurodevelopmental disorder presenting with features that overlap considerably with those of proximal del1p36 syndrome. The clinical profile of this disease includes developmental delay/intellectual disability, autism spectrum disorder, anxiety, aggressive behavior, attention deficit disorder, hypotonia, brain and spine anomalies, congenital heart defects, high/narrow palate, facial dysmorphisms, and obesity/increased BMI, especially in females. SPEN also emerges as a relevant gene for del1p36 syndrome by co-expression analyses. Finally, we show that haploinsufficiency of SPEN is associated with a distinctive DNA methylation episignature of the X chromosome in affected females, providing further evidence of a specific contribution of the protein to the epigenetic control of this chromosome, and a paradigm of an X chromosome-specific episignature that classifies syndromic traits. We conclude that SPEN is required for multiple developmental processes and SPEN haploinsufficiency is a major contributor to a disorder associated with deletions centromeric to the previously established 1p36 critical regions.


Subject(s)
Chromosome Disorders/genetics , Chromosomes, Human, Pair 1/genetics , Chromosomes, Human, X/genetics , DNA-Binding Proteins/genetics , RNA-Binding Proteins/genetics , Adolescent , Autism Spectrum Disorder/genetics , Autism Spectrum Disorder/pathology , Child , Child, Preschool , Chromosome Deletion , Chromosome Disorders/physiopathology , DNA Methylation/genetics , Epigenesis, Genetic/genetics , Female , Haploinsufficiency/genetics , Humans , Intellectual Disability/genetics , Intellectual Disability/physiopathology , Male , Neurodevelopmental Disorders/genetics , Neurodevelopmental Disorders/physiopathology , Phenotype , Young Adult
11.
Genet Med ; 23(2): 363-373, 2021 02.
Article in English | MEDLINE | ID: mdl-33144681

ABSTRACT

PURPOSE: Pathogenic variants in the X-linked gene NEXMIF (previously KIAA2022) are associated with intellectual disability (ID), autism spectrum disorder, and epilepsy. We aimed to delineate the female and male phenotypic spectrum of NEXMIF encephalopathy. METHODS: Through an international collaboration, we analyzed the phenotypes and genotypes of 87 patients with NEXMIF encephalopathy. RESULTS: Sixty-three females and 24 males (46 new patients) with NEXMIF encephalopathy were studied, with 30 novel variants. Phenotypic features included developmental delay/ID in 86/87 (99%), seizures in 71/86 (83%) and multiple comorbidities. Generalized seizures predominated including myoclonic seizures and absence seizures (both 46/70, 66%), absence with eyelid myoclonia (17/70, 24%), and atonic seizures (30/70, 43%). Males had more severe developmental impairment; females had epilepsy more frequently, and varied from unaffected to severely affected. All NEXMIF pathogenic variants led to a premature stop codon or were deleterious structural variants. Most arose de novo, although X-linked segregation occurred for both sexes. Somatic mosaicism occurred in two males and a family with suspected parental mosaicism. CONCLUSION: NEXMIF encephalopathy is an X-linked, generalized developmental and epileptic encephalopathy characterized by myoclonic-atonic epilepsy overlapping with eyelid myoclonia with absence. Some patients have developmental encephalopathy without epilepsy. Males have more severe developmental impairment. NEXMIF encephalopathy arises due to loss-of-function variants.


Subject(s)
Autism Spectrum Disorder , Brain Diseases , Epilepsy , Autism Spectrum Disorder/genetics , Brain Diseases/genetics , Epilepsy/genetics , Female , Genes, X-Linked/genetics , Humans , Male , Nerve Tissue Proteins , Seizures/genetics
12.
Genet Med ; 23(3): 498-507, 2021 03.
Article in English | MEDLINE | ID: mdl-33144682

ABSTRACT

PURPOSE: Exome sequencing often identifies pathogenic genetic variants in patients with undiagnosed diseases. Nevertheless, frequent findings of variants of uncertain significance necessitate additional efforts to establish causality before reaching a conclusive diagnosis. To provide comprehensive genomic testing to patients with undiagnosed disease, we established an Individualized Medicine Clinic, which offered clinical exome testing and included a Translational Omics Program (TOP) that provided variant curation, research activities, or research exome sequencing. METHODS: From 2012 to 2018, 1101 unselected patients with undiagnosed diseases received exome testing. Outcomes were reviewed to assess impact of the TOP and patient characteristics on diagnostic rates through descriptive and multivariate analyses. RESULTS: The overall diagnostic yield was 24.9% (274 of 1101 patients), with 174 (15.8% of 1101) diagnosed on the basis of clinical exome sequencing alone. Four hundred twenty-three patients with nondiagnostic or without access to clinical exome sequencing were evaluated by the TOP, with 100 (9% of 1101) patients receiving a diagnosis, accounting for 36.5% of the diagnostic yield. The identification of a genetic diagnosis was influenced by the age at time of testing and the disease phenotype of the patient. CONCLUSION: Integration of translational research activities into clinical practice of a tertiary medical center can significantly increase the diagnostic yield of patients with undiagnosed disease.


Subject(s)
Exome , Undiagnosed Diseases , Exome/genetics , Genetic Testing , Humans , Phenotype , Translational Research, Biomedical , Exome Sequencing
13.
Child Neurol Open ; 7: 2329048X20955003, 2020.
Article in English | MEDLINE | ID: mdl-33117858

ABSTRACT

Variants in PURA have recently been associated with an autosomal dominant form of PURA-related neurodevelopmental disorders. Using whole exome sequencing, patients with neurological phenotypes including hypotonia, developmental delay, learning disabilities, and seizures were identified to have de novo variants in PURA. We describe a proband with features similar to the previously described cases with PURA variants, but including additional features, such as short stature, delayed bone age, and delayed puberty. Exome sequencing revealed a novel pathogenic nonsense variant, c.190A>T (p.Lys64*; NM_005859), in PURA that was not inherited from the proband's mother. In the recent literature, a significant number of patients with variants in PURA have been described, but to our knowledge, none of these patients have the delayed bone age and growth plateau observed in the proband. It is therefore possible that the above PURA variant may be responsible for the novel features and thus expands the PURA-related phenotype spectrum.

14.
Article in English | MEDLINE | ID: mdl-32843428

ABSTRACT

Pathogenic variants in the XPC complex subunit, DNA damage recognition, and repair factor (XPC) are the cause of xeroderma pigmentosum, group C (MIM: 278720). Xeroderma pigmentosum is an inherited condition characterized by hypersensitivity to ultraviolet (UV) irradiation and increased risk of skin cancer due to a defect in nucleotide excision repair (NER). Here we describe an individual with a novel missense variant and deletion of exons 14-15 in XPC presenting with a history of recurrent melanomas. The proband is a 39-yr-old female evaluated through the Mayo Clinic Department of Clinical Genomics. Prior to age 36, she had more than 60 skin biopsies that showed dysplastic nevi, many of which had atypia. At age 36 she presented with her first melanoma in situ, and since then has had more than 10 melanomas. The proband underwent research whole-exome sequencing (WES) through the Mayo Clinic's Center for Individualized Medicine and a novel heterozygous variant of uncertain significance (VUS) in XPC (c.1709T > G, p.Val570Gly) was identified. Clinical confirmation pursued via XPC gene sequencing and deletion/duplication analysis of XPC revealed a pathogenic heterozygous deletion of ∼1 kb within XPC, including exons 14 and 15. Research studies determined the alterations to be in trans Although variants in XPC generally result in early-onset skin cancer in childhood, the proband is atypical in that she did not present with her first melanoma until age 36. Review of the patient's clinical, pathological, and genetic findings points to a diagnosis of delayed presentation of xeroderma pigmentosum.


Subject(s)
DNA-Binding Proteins/genetics , Xeroderma Pigmentosum/genetics , Adult , DNA Damage , DNA Repair/genetics , DNA-Binding Proteins/metabolism , Exons , Female , Humans , Melanoma/genetics , Mutation, Missense , Neoplasm Recurrence, Local/genetics , Skin/metabolism , Skin/pathology , Skin Neoplasms/genetics , Ultraviolet Rays/adverse effects , Exome Sequencing , Xeroderma Pigmentosum/diagnosis , Xeroderma Pigmentosum/metabolism , Melanoma, Cutaneous Malignant
15.
Am J Med Genet A ; 182(10): 2442-2449, 2020 10.
Article in English | MEDLINE | ID: mdl-32815268

ABSTRACT

Prader-Willi syndrome (PWS) is a prototypic genetic condition related to imprinting. Causative mechanisms include paternal 15q11-q13 deletion, maternal chromosome 15 uniparental disomy (UPD15), Prader-Willi Syndrome/Angelman Syndrome (PWS/AS) critical region imprinting defects, and complex chromosomal rearrangements. Maternal UPD15-related PWS poses risks of concomitant autosomal recessive (AR) disorders when the mother carries a pathogenic variant in one of the genes on chromosome 15 associated with autosomal recessive inherited disease. Co-occurrence of autosomal recessive conditions in the setting of UPD leads to increased complexity of the clinical phenotype, and may delay the diagnosis of PWS. We report a patient with PWS and associated congenital ichthyosis due to maternal UPD15, and a homozygous novel pathogenic variant in ceramide synthase 3 (CERS3). We also review the literature of associated disorders reported in the setting of maternal UPD15-related PWS and provide a summary of the previously described CERS3 variants. This represents the second case of autosomal recessive congenital ichthyosis (ARCI) in the setting of PWS and UPD15. There needs to be a high index of suspicion of this genetic mechanism when there is unexpected phenotype or evolution of the clinical course in a patient with PWS.


Subject(s)
Angelman Syndrome/genetics , Ichthyosis/genetics , Prader-Willi Syndrome/genetics , Sphingosine N-Acyltransferase/genetics , Adolescent , Adult , Angelman Syndrome/pathology , Child , Child, Preschool , Chromosomes, Human, Pair 15/genetics , Congenital Abnormalities/diagnosis , Congenital Abnormalities/genetics , Congenital Abnormalities/pathology , Female , Genes, Recessive/genetics , Genomic Imprinting/genetics , Humans , Ichthyosis/complications , Ichthyosis/pathology , In Situ Hybridization, Fluorescence , Infant , Infant, Newborn , Maternal Inheritance/genetics , Prader-Willi Syndrome/diagnosis , Prader-Willi Syndrome/pathology , Uniparental Disomy/diagnosis , Uniparental Disomy/genetics , Uniparental Disomy/pathology , Young Adult
17.
Mol Genet Genomic Med ; 8(9): e1341, 2020 09.
Article in English | MEDLINE | ID: mdl-32597037

ABSTRACT

BACKGROUND: RNA polymerase III (Pol III)-related disorders are autosomal recessive neurodegenerative disorders caused by variants in POLR3A or POLR3B. Recently, a novel phenotype of adult-onset spastic ataxia was identified in individuals with the c.1909+22G>A POLR3A variant in compound heterozygosity. METHODS: Whole-exome sequencing was performed in the proband and parents. Variants were confirmed by Sanger sequencing. RNA sequencing was performed to evaluate splicing implications. RESULTS: A 42-year-old female was evaluated for unexplained neurological findings with a slow progressive decline in gait and walking speed since adolescence. WES revealed a novel missense variant (c.3593A>C, p.Lys1198Arg) in exon 27 of POLR3A in compound heterozygosity with the c.1909+22G>A variant. Summary of previously reported clinical features from individuals with pathogenic biallelic alterations in POLR3A and adult-onset phenotype is consistent with our findings. RNA analysis revealed c.3593A>G drives the production of four RNA transcript products each with different functional impacts. CONCLUSION: The novel dual-class c.3593A>C variant in POLR3A causes an amino acid substitution and complex disruption of splicing. Our report supports the need to investigate variants near splice junctions for proper interpretation. Current interpretation guidelines need to address best practices for inclusion of predicted or measured transcriptional disruption pending functional activity or reliable transcript abundance estimates.


Subject(s)
Cerebellar Ataxia/genetics , Genetic Testing/standards , RNA Polymerase III/genetics , Adult , Cerebellar Ataxia/diagnostic imaging , Cerebellar Ataxia/pathology , Female , Genetic Testing/methods , Humans , Mutation, Missense , Phenotype , RNA Polymerase III/metabolism , RNA Splicing
18.
Clin Genet ; 98(2): 172-178, 2020 08.
Article in English | MEDLINE | ID: mdl-32415735

ABSTRACT

UBE2A deficiency, that is, intellectual disability (ID) Nascimento type (MIM 300860), is an X-linked syndrome characterized by developmental delay, moderate to severe ID, seizures, dysmorphisms, skin anomalies, and urogenital malformations. Forty affected subjects have been reported thus far, with 31 cases having intragenic UBE2A variants. Here, we report on additional eight affected subjects from seven unrelated families who were found to be hemizygous for previously unreported UBE2A missense variants (p.Glu62Lys, p.Arg95Cys, p.Thr99Ala, and p.Arg135Trp) or small in-frame deletions (p.Val81_Ala83del, and p.Asp101del). A wide phenotypic spectrum was documented in these subjects, ranging from moderate ID associated with mild dysmorphisms to severe features including congenital heart defects (CHD), severe cognitive impairment, and pineal gland tumors. Four variants affected residues (Glu62, Arg95, Thr99 and Asp101) that contribute to stabilizing the structure of the E3 binding domain. The three-residue in-frame deletion, p.Val81_Ala83del, resulted from aberrant processing of the transcript. This variant and p.Arg135Trp mapped to regions of the protein located far from the E3 binding region, and caused variably accelerated protein degradation. By reviewing available clinical information, we revise the clinical and molecular profile of the disorder and document genotype-phenotype correlations. Pineal gland cysts/tumors, CHD and hypogammaglobulinemia emerge as recurrent features.


Subject(s)
Genetic Diseases, X-Linked/genetics , Heart Defects, Congenital/genetics , Intellectual Disability/genetics , Ubiquitin-Conjugating Enzymes/genetics , Child, Preschool , Female , Genetic Diseases, X-Linked/complications , Genetic Diseases, X-Linked/pathology , Genetic Predisposition to Disease , Heart Defects, Congenital/complications , Heart Defects, Congenital/pathology , Humans , Infant , Intellectual Disability/complications , Intellectual Disability/pathology , Male , Pedigree , Skin Abnormalities/complications , Skin Abnormalities/genetics , Skin Abnormalities/pathology , Urogenital Abnormalities/complications , Urogenital Abnormalities/genetics , Urogenital Abnormalities/pathology
19.
Mol Vis ; 26: 257-276, 2020.
Article in English | MEDLINE | ID: mdl-32256029

ABSTRACT

Purpose: Retinopathy of prematurity (ROP) is a condition of aberrant retinal vascularization in premature infants in response to high levels of oxygen used for critical care that can potentially cause blindness. Although therapies to mitigate vascular abnormalities are being evaluated, functional deficits often remain in patients with treated or regressed ROP. This study investigated long-term outcomes of hyperoxia on retinal morphology and function using a mouse model of oxygen-induced ischemic retinopathy (OIR). Methods: Twenty-two mice were exposed to 77% oxygen to induce OIR, while 23 age-matched control mice were raised in room air (RA). In vivo fluorescein angiography (FA), spectral-domain optical coherence tomography (SD-OCT), and focal electroretinography (fERG) were performed at P19, P24, P32, and P47, followed by histological assessments of retinal morphology, gliosis, microglia activation, and apoptosis. Results: FA in OIR mice showed capillary attrition despite peripheral revascularization. Inner retina thinning was detected with SD-OCT; outer and inner retinal dysfunction were demonstrated with fERG. Histology of the OIR mice exhibited a thin, disorganized structure. Immunohistochemistry showed increased gliosis, microglial activation, and apoptosis with increasing age from P19 to P47. The synapses between rod photoreceptor cells and rod bipolar cells were ectopically localized in the OIR mice. Conclusions: We demonstrated histological evidence of persistent ectopic synapses, prolonged cellular apoptosis, and gliosis in the OIR retina that corresponded with long-term in vivo evidence of capillary attrition, inner retinal thinning, and dysfunction despite full peripheral revascularization. Further studies on the mechanisms underlying these persistent phenotypes could enhance our understanding of ROP pathogenesis and lead to new therapeutic targets to preserve visual function in premature infants.


Subject(s)
Apoptosis , Hyperoxia/complications , Oxygen/adverse effects , Retina/growth & development , Retina/pathology , Retinal Neovascularization/pathology , Retinopathy of Prematurity/physiopathology , Animals , Animals, Newborn , Dendrites/metabolism , Disease Models, Animal , Electroretinography , Fluorescein Angiography , Gliosis/pathology , Hyperoxia/pathology , Hyperoxia/physiopathology , Immunohistochemistry , Mice , Mice, Inbred C57BL , Microglia/metabolism , Microglia/pathology , Photoreceptor Cells/metabolism , Protein Kinase C-alpha/metabolism , Retina/metabolism , Retinal Bipolar Cells/metabolism , Retinopathy of Prematurity/diagnostic imaging , Synapses/metabolism , Tomography, Optical Coherence
20.
Eur J Med Genet ; 63(4): 103850, 2020 Apr.
Article in English | MEDLINE | ID: mdl-31954878

ABSTRACT

The Jumonji domain containing 1C (JMJD1C) gene encodes the Jumonji domain-containing protein 1C (JMJD1C) and is a member of the jmJC domain-containing protein family involved in histone demethylation that is expressed in the brain. We report seven, unrelated patients with developmental delays or intellectual disability and heterozygous, de novo sequence variants in JMJD1C. All patients had developmental delays, but there were no consistent additional findings. Two patients were reported to have seizures for which there was no other identified cause. De novo, deleterious sequence variants in JMJD1C have previously been reported in patients with autism spectrum disorder and a phenotype resembling classical Rett syndrome, but only one JMJD1C variant has undergone functional evaluation. In all of the seven patients in this report, there was a plausible, alternative explanation for the neurocognitive phenotype or a modifying factor, such as an additional potentially pathogenic variant, presence of the variant in a population database, heteroplasmy for a mitochondrial variant or mosaicism for the JMJD1C variant. Although the de novo variants in JMJD1C are likely to be relevant to the developmental phenotypes observed in these patients, we conclude that further data supporting the association of JMJD1C variants with intellectual disability is still needed.


Subject(s)
Autism Spectrum Disorder/genetics , Intellectual Disability/genetics , Jumonji Domain-Containing Histone Demethylases/genetics , Oxidoreductases, N-Demethylating/genetics , Seizures/genetics , Child , Child, Preschool , Female , Genetic Variation , Humans , Male
SELECTION OF CITATIONS
SEARCH DETAIL
...