Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
2.
Cell Host Microbe ; 25(1): 59-72.e8, 2019 01 09.
Article in English | MEDLINE | ID: mdl-30629920

ABSTRACT

Eliciting HIV-1-specific broadly neutralizing antibodies (bNAbs) remains a challenge for vaccine development, and the potential of passively delivered bNAbs for prophylaxis and therapeutics is being explored. We used neutralization data from four large virus panels to comprehensively map viral signatures associated with bNAb sensitivity, including amino acids, hypervariable region characteristics, and clade effects across four different classes of bNAbs. The bNAb signatures defined for the variable loop 2 (V2) epitope region of HIV-1 Env were then employed to inform immunogen design in a proof-of-concept exploration of signature-based epitope targeted (SET) vaccines. V2 bNAb signature-guided mutations were introduced into Env 459C to create a trivalent vaccine, and immunization of guinea pigs with V2-SET vaccines resulted in increased breadth of NAb responses compared with Env 459C alone. These data demonstrate that bNAb signatures can be utilized to engineer HIV-1 Env vaccine immunogens capable of eliciting antibody responses with greater neutralization breadth.


Subject(s)
Antibodies, Neutralizing/immunology , Epitopes/immunology , HIV Antibodies/immunology , HIV Infections/immunology , HIV Infections/prevention & control , Vaccines , Amino Acid Sequence , Animals , Antibodies, Neutralizing/therapeutic use , Antibody Formation , Disease Models, Animal , Epitopes/genetics , Female , Guinea Pigs , HEK293 Cells , HIV Envelope Protein gp120/immunology , HIV Infections/virology , HIV-1/genetics , Humans , Immunization , Inhibitory Concentration 50 , Models, Molecular , Mutation , Peptide Fragments/immunology , Protein Binding , Vaccination , env Gene Products, Human Immunodeficiency Virus/genetics , env Gene Products, Human Immunodeficiency Virus/immunology
3.
Retrovirology ; 7: 25, 2010 Mar 23.
Article in English | MEDLINE | ID: mdl-20331894

ABSTRACT

BACKGROUND: Inter-subtype recombinants dominate the HIV epidemics in three geographical regions. To better understand the role of HIV recombinants in shaping the current HIV epidemic, we here present the results of a large-scale subtyping analysis of 9435 HIV-1 sequences that involve subtypes A, B, C, G, F and the epidemiologically important recombinants derived from three continents. RESULTS: The circulating recombinant form CRF02_AG, common in West Central Africa, appears to result from recombination events that occurred early in the divergence between subtypes A and G, followed by additional recent recombination events that contribute to the breakpoint pattern defining the current recombinant lineage. This finding also corrects a recent claim that G is a recombinant and a descendant of CRF02, which was suggested to be a pure subtype. The BC and BF recombinants in China and South America, respectively, are derived from recent recombination between contemporary parental lineages. Shared breakpoints in South America BF recombinants indicate that the HIV-1 epidemics in Argentina and Brazil are not independent. Therefore, the contemporary HIV-1 epidemic has recombinant lineages of both ancient and more recent origins. CONCLUSIONS: Taken together, we show that these recombinant lineages, which are highly prevalent in the current HIV epidemic, are a mixture of ancient and recent recombination. The HIV pandemic is moving towards having increasing complexity and higher prevalence of recombinant forms, sometimes existing as "families" of related forms. We find that the classification of some CRF designations need to be revised as a consequence of (1) an estimated > 5% error in the original subtype assignments deposited in the Los Alamos sequence database; (2) an increasing number of CRFs are defined while they do not readily fit into groupings for molecular epidemiology and vaccine design; and (3) a dynamic HIV epidemic context.


Subject(s)
Disease Outbreaks , Evolution, Molecular , HIV Infections/epidemiology , HIV Infections/virology , HIV-1/pathogenicity , RNA, Viral/genetics , Recombination, Genetic , Cluster Analysis , HIV-1/genetics , Humans , Phylogeny , Sequence Analysis, DNA
4.
J Neurosci ; 22(19): 8563-73, 2002 Oct 01.
Article in English | MEDLINE | ID: mdl-12351730

ABSTRACT

Many ligand/receptor families are known to contribute to axonal growth and targeting. Thus far, there have been no reports implicating Wnts and Frizzleds in this process, despite their large numbers and widespread expression within the CNS. In this study, we show that targeted deletion of the mouse fz3 gene leads to severe defects in several major axon tracts within the forebrain. In particular, fz3(-/-) mice show a complete loss of the thalamocortical, corticothalamic, and nigrostriatal tracts and of the anterior commissure, and they show a variable loss of the corpus callosum. Peripheral nerve fibers and major axon tracts in the more caudal regions of the CNS are mostly or completely unaffected. Cell proliferation in the ventricular zone and cell migration to the developing cortex proceed normally until at least embryonic day 14. Extensive cell death in the fz3(-/-) striatum occurs late in gestation, perhaps secondary to the nearly complete absence of long-range connections. In contrast, there is little cell death, as assayed by terminal deoxynucleotidyl transferase-mediated biotinylated UTP nick end labeling, in the cortex. These data provide the first link between Frizzled signaling and axonal development.


Subject(s)
Central Nervous System/abnormalities , Central Nervous System/metabolism , Nerve Fibers/physiology , Neural Pathways/abnormalities , Receptors, Cell Surface/deficiency , Receptors, G-Protein-Coupled , Abnormalities, Multiple/genetics , Abnormalities, Multiple/pathology , Animals , Apoptosis , Axons/pathology , Cell Division/physiology , Cell Movement/physiology , Central Nervous System/pathology , Cerebral Ventricles/cytology , Cerebral Ventricles/embryology , Frizzled Receptors , Gene Targeting , Genes, Reporter , In Situ Nick-End Labeling , Lac Operon , Mice , Mice, Inbred C57BL , Mice, Transgenic , Nerve Fibers/pathology , Nervous System Malformations/genetics , Nervous System Malformations/pathology , Neural Pathways/pathology , Phenotype , Prosencephalon/abnormalities , Prosencephalon/metabolism , Prosencephalon/pathology , Receptors, Cell Surface/genetics , Receptors, Cell Surface/metabolism , Respiratory Insufficiency/genetics , Respiratory Insufficiency/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...