Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 8(2): e56278, 2013.
Article in English | MEDLINE | ID: mdl-23418548

ABSTRACT

BACKGROUND: Nosocomial infection of health-care workers (HCWs) during outbreaks of respiratory infections (e.g. Influenza A H1N1 (2009)) is a significant concern for public health policy makers. World Health Organization (WHO)-defined 'aerosol generating procedures' (AGPs) are thought to increase the risk of aerosol transmission to HCWs, but there are presently insufficient data to quantify risk accurately or establish a hierarchy of risk-prone procedures. METHODOLOGY/PRINCIPAL FINDINGS: This study measured the amount of H1N1 (2009) RNA in aerosols in the vicinity of H1N1 positive patients undergoing AGPs to help quantify the potential risk of transmission to HCWs. There were 99 sampling occasions (windows) producing a total of 198 May stages for analysis in the size ranges 0.86-7.3 µm. Considering stages 2 (4-7.3 µm) and 3 (0.86-4 µm) as comprising one sample, viral RNA was detected in 14 (14.1%) air samples from 10 (25.6%) patients. Twenty three air samples were collected while potential AGPs were being performed of which 6 (26.1%) contained viral RNA; in contrast, 76 May samples were collected when no WHO 2009 defined AGP was being performed of which 8 (10.5%) contained viral RNA (unadjusted OR = 2.84 (95% CI 1.11-7.24) adjusted OR = 4.31 (0.83-22.5)). CONCLUSIONS/SIGNIFICANCE: With our small sample size we found that AGPs do not significantly increase the probability of sampling an H1N1 (2009) positive aerosol (OR (95% CI) = 4.31 (0.83-22.5). Although the probability of detecting positive H1N1 (2009) positive aerosols when performing various AGPs on intensive care patients above the baseline rate (i.e. in the absence of AGPs) did not reach significance, there was a trend towards hierarchy of AGPs, placing bronchoscopy and respiratory and airway suctioning above baseline (background) values. Further, larger studies are required but these preliminary findings may be of benefit to infection control teams.


Subject(s)
Aerosols/analysis , Cross Infection/prevention & control , Influenza, Human/transmission , Adolescent , Adult , Aged , Air Microbiology/standards , Bronchoscopy/statistics & numerical data , Child , Child, Preschool , Cross Infection/virology , Female , Humans , Infectious Disease Transmission, Patient-to-Professional/prevention & control , Influenza A Virus, H1N1 Subtype/genetics , Influenza A Virus, H1N1 Subtype/isolation & purification , Influenza, Human/epidemiology , Influenza, Human/virology , Intensive Care Units/statistics & numerical data , Male , Middle Aged , Pandemics/prevention & control , RNA, Viral/genetics , Respiratory System/virology , Risk Assessment , Risk Factors , United Kingdom/epidemiology , World Health Organization , Young Adult
2.
Microbiology (Reading) ; 156(Pt 6): 1824-1835, 2010 Jun.
Article in English | MEDLINE | ID: mdl-20223800

ABSTRACT

Streptococcus equi possesses a haem-uptake system homologous to that of Streptococcus pyogenes and Streptococcus zooepidemicus. The system consists of two ligand-binding proteins (Shr and Shp) and proteins (HtsA-C) with homology to an ABC transporter. The haem-uptake system of S. equi differs from that of S. pyogenes and S. zooepidemicus in that Shr is truncated by two-thirds. This study focused on the SeShr, SeShp and SeHtsA proteins of S. equi. Analysis of shr, shp and shphtsA knockout mutants showed that all three proteins were expressed in vitro and that expression was upregulated under conditions of iron limitation. SeShr possesses no membrane-/cell wall-spanning sequences and was shown to be secreted. Both SeShp and SeHtsA were confirmed to be envelope-associated. Recombinant SeShp and SeHtsA proteins have been previously shown to bind haem and SeHtsA could capture haem from SeShp. This report extends these studies and shows that both SeShp and SeHtsA can sequester haem from haemoglobin but not from haemoglobin-haptoglobin complexes. Like full-length Shr, SeShr possesses haemoglobin and haemoglobin-haptoglobin binding ability but unlike full-length Shr, it lacks haem- or fibronectin-binding capabilities. Analysis of SeShr truncates showed that residues within and upstream of the near transporter (NEAT) domain are required for this ligand binding. Structural predictions suggest that truncation of NEAT1 in SeShr accounts for its impaired ability to bind haem. Haem and haemoglobin restored to almost normal the impaired growth rates of wild-type S. equi cultured under iron-limiting conditions. However, no difference in the growth rates of wild-type and mutants could be detected under the in vitro growth conditions tested.


Subject(s)
Bacterial Proteins/metabolism , Heme/metabolism , Hemeproteins/metabolism , Streptococcus equi/metabolism , Amino Acid Sequence , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Base Sequence , Biological Transport , Haptoglobins/metabolism , Heme-Binding Proteins , Hemeproteins/chemistry , Hemeproteins/genetics , Hemoglobins/metabolism , Protein Structure, Tertiary , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Streptococcus equi/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...