Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Front Chem ; 9: 728845, 2021.
Article in English | MEDLINE | ID: mdl-34422772

ABSTRACT

[2.2]Paracyclophane scaffolds have seen limited use as building blocks in supramolecular chemistry. Here, we report the synthesis and characterization of a 1D coordination polymer consisting of silver(I) ions bound to a [2.2]paracyclophane scaffold functionalized with two 4-pyridyl units. The structure of the polymer has been determined from single crystal X-ray diffraction analysis and reveals two different silver coordination motifs that alternate along the 1D coordination polymer. The coordination polymer exhibits strong blue and sky-blue fluorescence in solution and in the crystalline solid state, respectively.

2.
Inorg Chem ; 60(14): 10323-10339, 2021 Jul 19.
Article in English | MEDLINE | ID: mdl-34197094

ABSTRACT

We report a series of seven cationic heteroleptic copper(I) complexes of the form [Cu(P^P)(dmphen)]BF4, where dmphen is 2,9-dimethyl-1,10-phenanthroline and P^P is a diphosphine chelate, in which the effect of the bite angle of the diphosphine ligand on the photophysical properties of the complexes was studied. Several of the complexes exhibit moderately high photoluminescence quantum yields in the solid state, with ΦPL of up to 35%, and in solution, with ΦPL of up to 98%. We were able to correlate the powder photoluminescence quantum yields with the % Vbur of the P^P ligand. The most emissive complexes were used to fabricate both organic light-emitting diodes and light-emitting electrochemical cells (LECs), both of which showed moderate performance. Compared to the benchmark copper(I)-based LECs, [Cu(dnbp)(DPEPhos)]+ (maximum external quantum efficiency, EQEmax = 16%), complex 3 (EQEmax = 1.85%) showed a much longer device lifetime (t1/2 = 1.25 h and >16.5 h for [Cu(dnbp)(DPEPhos)]+ and complex 3, respectively). The electrochemiluminescence (ECL) properties of several complexes were also studied, which, to the best of our knowledge, constitutes the first ECL study for heteroleptic copper(I) complexes. Notably, complexes exhibiting more reversible electrochemistry were associated with higher annihilation ECL as well as better performance in a LEC.

4.
Adv Mater ; 30(50): e1804231, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30318632

ABSTRACT

High-efficiency pure blue phosphorescent organic light-emitting diodes (OLEDs) remain one of the grand challenges, principally because the emissive complexes employed either do not possess sufficiently high photoluminescence quantum yields or exhibit unsatisfactory Commission International de l'Éclairage (CIE) coordinates. Here two deep-blue-emitting homoleptic iridium(III) complexes are reported and OLEDs are demonstrated with CIE coordinates of (0.15, 0.05) and maximum external quantum efficiency of 13.4%, which decreases slightly to 12.5% at 100 cd m-2 . They represent examples of the most efficient OLEDs surpassing the CIEy requirement of the National Television System Committee (NTSC) and the European Broadcasting Union (EBU). Emitter orientation contributes to the excellent device performance.

SELECTION OF CITATIONS
SEARCH DETAIL
...