Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Med Biol ; 67(17)2022 08 18.
Article in English | MEDLINE | ID: mdl-35878610

ABSTRACT

Objective.The purpose of this study is to develop a treatment planning process (TPP) for non-isocentric dynamic trajectory radiotherapy (DTRT) using dynamic gantry rotation, collimator rotation, table rotation, longitudinal, vertical and lateral table translations and intensity modulation and to validate the dosimetric accuracy.Approach.The TPP consists of two steps. First, a path describing the dynamic gantry rotation, collimator rotation and dynamic table rotation and translations is determined. Second, an optimization of the intensity modulation along the path is performed. We demonstrate the TPP for three use cases. First, a non-isocentric DTRT plan for a brain case is compared to an isocentric DTRT plan in terms of dosimetric plan quality and delivery time. Second, a non-isocentric DTRT plan for a craniospinal irradiation (CSI) case is compared to a multi-isocentric intensity modulated radiotherapy (IMRT) plan. Third, a non-isocentric DTRT plan for a bilateral breast case is compared to a multi-isocentric volumetric modulated arc therapy (VMAT) plan. The non-isocentric DTRT plans are delivered on a TrueBeam in developer mode and their dosimetric accuracy is validated using radiochromic films.Main results.The non-isocentric DTRT plan for the brain case is similar in dosimetric plan quality and delivery time to the isocentric DTRT plan but is expected to reduce the risk of collisions. The DTRT plan for the CSI case shows similar dosimetric plan quality while reducing the delivery time by 45% in comparison with the IMRT plan. The DTRT plan for the breast case showed better treatment plan quality in comparison with the VMAT plan. The gamma passing rates between the measured and calculated dose distributions are higher than 95% for all three plans.Significance.The versatile benefits of non-isocentric DTRT are demonstrated with three use cases, namely reduction of collision risk, reduced setup and delivery time and improved dosimetric plan quality.


Subject(s)
Radiotherapy Planning, Computer-Assisted , Radiotherapy, Intensity-Modulated , Phantoms, Imaging , Radiometry , Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted/methods , Radiotherapy, Intensity-Modulated/methods
2.
Radiat Oncol ; 14(1): 172, 2019 Sep 18.
Article in English | MEDLINE | ID: mdl-31533746

ABSTRACT

BACKGROUND: Vendor-independent Monte Carlo (MC) dose calculation (IDC) for patient-specific quality assurance of multi-leaf collimator (MLC) based CyberKnife treatments is used to benchmark and validate the commercial MC dose calculation engine for MLC based treatments built into the CyberKnife treatment planning system (Precision MC). METHODS: The benchmark included dose profiles in water in 15 mm depth and depth dose curves of rectangular MLC shaped fields ranging from 7.6 mm × 7.7 mm to 115.0 mm × 100.1 mm, which were compared between IDC, Precision MC and measurements in terms of dose difference and distance to agreement. Dose distributions of three phantom cases and seven clinical lung cases were calculated using both IDC and Precision MC. The lung PTVs ranged from 14 cm3 to 93 cm3. Quantitative comparison of these dose distributions was performed using dose-volume parameters and 3D gamma analysis with 2% global dose difference and 1 mm distance criteria and a global 10% dose threshold. Time to calculate dose distributions was recorded and efficiency was assessed. RESULTS: Absolute dose profiles in 15 mm depth in water showed agreement between Precision MC and IDC within 3.1% or 1 mm. Depth dose curves agreed within 2.3% / 1 mm. For the phantom and clinical lung cases, mean PTV doses differed from - 1.0 to + 2.3% between IDC and Precision MC and gamma passing rates were > =98.1% for all multiple beam treatment plans. For the lung cases, lung V20 agreed within ±1.5%. Calculation times ranged from 2.2 min (for 39 cm3 PTV at 1.0 × 1.0 × 2.5 mm3 native CT resolution) to 8.1 min (93 cm3 at 1.1 × 1.1 × 1.0 mm3), at 2% uncertainty for Precision MC for the 7 examined lung cases and 4-6 h for IDC, which, however, is not optimized for efficiency but used as a gold standard for accuracy. CONCLUSIONS: Both accuracy and efficiency of Precision MC in the context of MLC based planning for the CyberKnife M6 system were benchmarked against MC based IDC framework. Precision MC is used in clinical practice at our institute.


Subject(s)
Algorithms , Lung Neoplasms/surgery , Monte Carlo Method , Phantoms, Imaging , Prostatic Neoplasms/surgery , Radiosurgery/instrumentation , Radiosurgery/methods , Benchmarking , Humans , Lung Neoplasms/pathology , Male , Organs at Risk/radiation effects , Prognosis , Prostatic Neoplasms/pathology , Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted/methods , Radiotherapy, Intensity-Modulated/methods
3.
Phys Med Biol ; 63(1): 015015, 2017 Dec 19.
Article in English | MEDLINE | ID: mdl-29256450

ABSTRACT

This work aims to develop, implement and validate a Monte Carlo (MC)-based independent dose calculation (IDC) framework to perform patient-specific quality assurance (QA) for multi-leaf collimator (MLC)-based CyberKnife® (Accuray Inc., Sunnyvale, CA) treatment plans. The IDC framework uses an XML-format treatment plan as exported from the treatment planning system (TPS) and DICOM format patient CT data, an MC beam model using phase spaces, CyberKnife MLC beam modifier transport using the EGS++ class library, a beam sampling and coordinate transformation engine and dose scoring using DOSXYZnrc. The framework is validated against dose profiles and depth dose curves of single beams with varying field sizes in a water tank in units of cGy/Monitor Unit and against a 2D dose distribution of a full prostate treatment plan measured with Gafchromic EBT3 (Ashland Advanced Materials, Bridgewater, NJ) film in a homogeneous water-equivalent slab phantom. The film measurement is compared to IDC results by gamma analysis using 2% (global)/2 mm criteria. Further, the dose distribution of the clinical treatment plan in the patient CT is compared to TPS calculation by gamma analysis using the same criteria. Dose profiles from IDC calculation in a homogeneous water phantom agree within 2.3% of the global max dose or 1 mm distance to agreement to measurements for all except the smallest field size. Comparing the film measurement to calculated dose, 99.9% of all voxels pass gamma analysis, comparing dose calculated by the IDC framework to TPS calculated dose for the clinical prostate plan shows 99.0% passing rate. IDC calculated dose is found to be up to 5.6% lower than dose calculated by the TPS in this case near metal fiducial markers. An MC-based modular IDC framework was successfully developed, implemented and validated against measurements and is now available to perform patient-specific QA by IDC.


Subject(s)
Monte Carlo Method , Neoplasms/surgery , Phantoms, Imaging , Radiosurgery/methods , Radiotherapy Planning, Computer-Assisted/methods , Radiotherapy, Intensity-Modulated/methods , Algorithms , Humans , Radiometry , Radiotherapy Dosage
4.
Phys Med Biol ; 61(8): 3208-21, 2016 Apr 21.
Article in English | MEDLINE | ID: mdl-27025897

ABSTRACT

Dose rate is an essential factor in radiobiology. As modern radiotherapy delivery techniques such as volumetric modulated arc therapy (VMAT) introduce dynamic modulation of the dose rate, it is important to assess the changes in dose rate. Both the rate of monitor units per minute (MU rate) and collimation are varied over the course of a fraction, leading to different dose rates in every voxel of the calculation volume at any point in time during dose delivery. Given the radiotherapy plan and machine specific limitations, a VMAT treatment plan can be split into arc sectors between Digital Imaging and Communications in Medicine control points (CPs) of constant and known MU rate. By calculating dose distributions in each of these arc sectors independently and multiplying them with the MU rate, the dose rate in every single voxel at every time point during the fraction can be calculated. Independently calculated and then summed dose distributions per arc sector were compared to the whole arc dose calculation for validation. Dose measurements and video analysis were performed to validate the calculated datasets. A clinical head and neck, cranial and liver case were analyzed using the tool developed. Measurement validation of synthetic test cases showed linac agreement to precalculated arc sector times within ±0.4 s and doses ±0.1 MU (one standard deviation). Two methods for the visualization of dose rate datasets were developed: the first method plots a two-dimensional (2D) histogram of the number of voxels receiving a given dose rate over the course of the arc treatment delivery. In similarity to treatment planning system display of dose, the second method displays the dose rate as color wash on top of the corresponding computed tomography image, allowing the user to scroll through the variation over time. Examining clinical cases showed dose rates spread over a continuous spectrum, with mean dose rates hardly exceeding 100 cGy min(-1) for conventional fractionation. A tool to analyze dose rate distributions in VMAT plans with sub-second accuracy was successfully developed and validated. Dose rates encountered in clinical VMAT test cases show a continuous spectrum with a mean less than or near 100 cGy min(-1) for conventional fractionation.


Subject(s)
Brain Neoplasms/radiotherapy , Dose Fractionation, Radiation , Head and Neck Neoplasms/radiotherapy , Liver Neoplasms/radiotherapy , Phantoms, Imaging , Radiotherapy Planning, Computer-Assisted/methods , Radiotherapy, Intensity-Modulated/methods , Humans , Monte Carlo Method , Particle Accelerators , Radiotherapy Dosage , Tomography, X-Ray Computed
SELECTION OF CITATIONS
SEARCH DETAIL
...