Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Pollut ; 341: 122966, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-37981183

ABSTRACT

Methylmercury (MeHg) is the most neurotoxic and bioaccumulative form of mercury (Hg) present in the terrestrial and aquatic food sources of boreal ecosystems, posing potential risks to wildlife and human health. Harvesting impacts on Hg methylation and MeHg concentrations in forest soils and stream sediment are not fully understood. In this study, a field investigation was carried out in 4 harvested and 2 unharvested boreal forest watersheds, before and after harvest, to better understand impacts on Hg methylation and MeHg concentration in soils and stream sediment, including their responses to different forest management practices. Changes in total Hg (THg) and MeHg concentrations, first-order potential rate constants for Hg methylation and MeHg demethylation (Kmeth and Kdemeth) as well as total carbon content and carbon-to-nitrogen ratio post-harvest in upland, wetland and riparian soils and stream sediment were assessed and compared. Increases in MeHg production were minimal in upland, wetland or riparian soils after harvest. Sediment in streams with minor buffer protection (∼3 m), greater fractions (>75%) of harvested watershed area and more road construction had significantly increased THg and MeHg concentrations, %-MeHg, Kmeth and total carbon content post-harvest. From these patterns, we infer that inputs of carbon and inorganic Hg into harvest-impacted stream sediment are likely sourced from the harvested upland areas and stimulate in situ MeHg production in stream sediment. These findings indicate the importance of stream sediment as potential MeHg pools in harvested forest watersheds. The findings also demonstrate that forest management practices aiming to mitigate organic matter and Hg inputs to streams can effectively alleviate harvesting impacts on Hg methylation and MeHg concentrations in stream sediment.


Subject(s)
Mercury , Methylmercury Compounds , Water Pollutants, Chemical , Humans , Mercury/analysis , Ecosystem , Rivers , Taiga , Soil , Water Pollutants, Chemical/analysis , Forests , Carbon , Environmental Monitoring
2.
J Environ Manage ; 345: 118526, 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37418824

ABSTRACT

Methyl mercury (MeHg) concentrations in boreal headwater streams are influenced by complex natural processes and disturbances such as forestry management. Understanding drivers of MeHg within boreal streams in Ontario, Canada, is of particular interest as there are legacy MeHg concerns. However, models accounting for the complexity of underlying processes have not yet been developed. We assessed how catchment characteristics and stream water chemistry influence MeHg concentrations within 19 watersheds of the Dryden - Wabigoon Forest in Ontario, Canada, using a structural equation modelling (SEM) approach. Despite the study area encompassing a large variation of boreal forest watersheds in the Canadian Shield, our SEM had substantial explanatory power across the region (χ251 = 45.37, p-value = 0.70, R2 = 0.75). Nitrate concentrations (p-value <0.001), water temperature (p-value = 0.002), and the latent watershed characteristic (p-value <0.001) had a positive influence on MeHg concentrations once variable interactions were accounted. Due to the inherent strengths of applying an SEM approach, we describe two plausible pathways driving MeHg concentrations: 1) indirect effect of forest-derived nutrients increases in-situ MeHg production in Dryden - Wabigoon Forest streams, and 2) direct supply of MeHg from inundated soils following consistent precipitation and inundation events (i.e., fill, sit, and spill).


Subject(s)
Mercury , Water Pollutants, Chemical , Mercury/chemistry , Ontario , Taiga , Forests , Water , Water Pollutants, Chemical/chemistry , Environmental Monitoring
3.
Mov Ecol ; 10(1): 10, 2022 Mar 02.
Article in English | MEDLINE | ID: mdl-35236408

ABSTRACT

BACKGROUND: While Pace of Life Syndrome predicts behavioural differences between individuals with differential growth and survival, testing these predictions in nature is challenging due to difficulties with measuring individual behaviour in the field. However, recent advances in acoustic telemetry technology have facilitated measurements of individual behaviour at scales not previously possible in aquatic ecosystems. METHODS: Using a Walleye (Sander vitreus) population inhabiting Black Bay, Lake Superior, we examine whether life history characteristics differ between more and less mobile individuals as predicted by Pace of Life Syndrome. We tracked the movement of 192 individuals from 2016 to 2019 using an acoustic telemetry study, relating patterns in annual migratory behaviour to individual growth, and seasonal changes in optimal thermal-optical habitat. RESULTS: We observed two consistent movement patterns in our study population-migratory individuals left Black Bay during late summer to early fall before returning to the bay, whereas residents remained within the bay year-round. The average maximum length of migrant Walleye was 5.5 cm longer than residents, and the sex ratios of Walleye caught during fall surveys was increasingly female-biased towards the mouth of Black Bay, suggesting that a majority of migrants were females. Further, Walleye occupancy outside of Black Bay was positively associated with increasing thermal-optical habitat. CONCLUSIONS: Walleye in Black Bay appear to conform to Pace of Life Syndrome, with migrant individuals gaining increased fitness through increased maximum size, which, given size-dependent fecundity in this species, likely results in greater reproductive success (via greater egg deposition vs. non-migrants). Further, apparent environmental (thermal) controls on migration suggest that migratory Walleye (more so than residents) may be more sensitive to changing environmental conditions (e.g., warming climate) than residents.

4.
Article in English | MEDLINE | ID: mdl-34303261

ABSTRACT

Associations between behaviors and the development of different life history tactics have been documented in several species of salmon, trout, and charr. While it is well known that such behaviors are heritable the genes and molecular pathways connected to these behaviors remain unknown. We used an RNA-seq approach to identify genes and molecular pathways differentially regulated in brain tissue between "shy" and "bold" brook trout (Salvelinus fontinalis). A small number of genes were differentially expressed between the behavioral types at several months after hatching and two years of age. Pathway analysis revealed that EIF2 signaling differed consistently between shy and bold individuals suggesting large-scale differences in protein synthesis between behavioral types in the brain. Additionally, the RNA-seq data were used to find polymorphisms within the brook trout genome and a GWAS approach was used to test for statistical associations between genetic variants and behavior type. One allele located in a transcription factor (TSHZ3) contained a protein-coding non-synonymous SNP suggesting that functional variation within TSHZ3 is connected to the development of different behaviors. These results suggest that the molecular basis of behavioral development is complex and due to the differential expression of many genes involved in a wide-range of different molecular pathways.


Subject(s)
Ecotype , Lakes , Animals , Gene Expression , Genome , Homeodomain Proteins , Humans , Trout/genetics
5.
Environ Res ; 188: 109750, 2020 09.
Article in English | MEDLINE | ID: mdl-32526497

ABSTRACT

Mercury pollution is a global environmental problem that threatens ecosystems, and negatively impacts human health and well-being. Mercury accumulation in fish within freshwater lakes is a complex process that appears to be driven by factors such as individual fish biology and water chemistry at the lake-scale, whereas, climate, and land-use/land-cover conditions within lake catchments can be influential at relatively larger scales. Nevertheless, unravelling the intricate network of pathways that govern how lake-scale and large-scale factors interact to affect mercury levels in fish remains an important scientific challenge. Using structural equation models (SEMs) and multiple long-term databases we identified direct and indirect effects of lake-scale and larger-scale factors on mercury levels in Walleye and Northern Pike - two species that are valued in inland fisheries. At the lake-level, the most parsimonious path models contained direct effects of fish weight, DOC, and pH, as well as an indirect effect of DOC on fish mercury levels via fish weight. Interestingly, lakeshed-, climate-, and full-path models that combine the effects of both lakeshed and climate revealed indirect effects of surrounding landscape conditions and latitude via DOC, pH, and fish weight but no direct effects on fish mercury levels. These results are generally consistent across species and lakes, except for some differences between stratified and non-stratified lakes. Our findings imply that understanding climate and land-use driven alterations of water chemistry and fish biology will be critical to predicting and mitigating fish mercury bioaccumulation in the future.


Subject(s)
Mercury , Water Pollutants, Chemical , Animals , Ecosystem , Environmental Monitoring , Fishes , Humans , Lakes , Mercury/analysis , Mercury/toxicity , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/toxicity
6.
Food Microbiol ; 23(3): 250-9, 2006 May.
Article in English | MEDLINE | ID: mdl-16943011

ABSTRACT

Seven strains of Listeria monocytogenes frequently involved in foodborne disease (epidemic strains) and 14 sporadic strains were examined to compare the attachment and subsequent biofilm growth on glass slides at 37 degrees C. Epidemic strains at 3 h incubation had significantly higher attachment values than sporadic strains (P<0.001), but subsequent biofilm growth over 24 h was not dependent on initial attachment. To better understand this phenomenon, the surface hydrophobicity and charge, as well as the extracellular carbohydrate content of the 21 L. monocytogenes strains were studied to determine if these surface characteristics had an effect on bacterial attachment to glass. Hydrophobicity was measured by the bacterial adherence to hydrocarbon (BATH) and polystyrene adherence methods. Hydrophobicity values obtained with the BATH method were linearly correlated with those from the polystyrene adherence method (r=0.64, P<0.001), but no correlation was found between hydrophobicity and bacterial attachment to glass. Hydrophobicity and surface charge measured as electrophoretic mobility (EM) were correlated (r=0.77, P<0.001); however, there was no correlation between the degree of attachment and surface charge. Colorimetric measurements of the total extracellular carbohydrates revealed that attached cells produced significantly (P<0.05) higher levels than planktonic cells after a 3 h time period. Analysis of co-variance (Nested ANCOVA) furthermore demonstrated that total carbohydrates produced by planktonic cells had a significant positive effect on 24 h biofilm growth (P=0.006). This is the first report to indicate that the ability of a L. monocytogenes strain to produce high levels of extracellular carbohydrates may increase its ability to form a biofilm. Genetic studies targeting carbohydrate synthesis pathways of L. monocytogenes will be required to fully understand the importance of this observation.


Subject(s)
Bacterial Adhesion , Biofilms/growth & development , Glass , Listeria monocytogenes/physiology , Analysis of Variance , Carbohydrate Metabolism , Colony Count, Microbial , Electricity , Food Microbiology , Surface Properties , Temperature , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...