Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Cell ; 187(8): 1922-1935.e20, 2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38554707

ABSTRACT

The hippocampus is critical for episodic memory. Although hippocampal activity represents place and other behaviorally relevant variables, it is unclear how it encodes numerous memories of specific events in life. To study episodic coding, we leveraged the specialized behavior of chickadees-food-caching birds that form memories at well-defined moments in time whenever they cache food for subsequent retrieval. Our recordings during caching revealed very sparse, transient barcode-like patterns of firing across hippocampal neurons. Each "barcode" uniquely represented a caching event and transiently reactivated during the retrieval of that specific cache. Barcodes co-occurred with the conventional activity of place cells but were uncorrelated even for nearby cache locations that had similar place codes. We propose that animals recall episodic memories by reactivating hippocampal barcodes. Similarly to computer hash codes, these patterns assign unique identifiers to different events and could be a mechanism for rapid formation and storage of many non-interfering memories.


Subject(s)
Birds , Hippocampus , Memory, Episodic , Animals , Birds/physiology , Feeding Behavior , Food , Hippocampus/cytology , Hippocampus/physiology , Neurons/cytology
2.
bioRxiv ; 2023 Jul 03.
Article in English | MEDLINE | ID: mdl-37461442

ABSTRACT

Episodic memory, or memory of experienced events, is a critical function of the hippocampus1-3. It is therefore important to understand how hippocampal activity represents specific events in an animal's life. We addressed this question in chickadees - specialist food-caching birds that hide food at scattered locations and use memory to find their caches later in time4,5. We performed high-density neural recordings in the hippocampus of chickadees as they cached and retrieved seeds in a laboratory arena. We found that each caching event was represented by a burst of firing in a unique set of hippocampal neurons. These 'barcode-like' patterns of activity were sparse (<10% of neurons active), uncorrelated even for immediately adjacent caches, and different even for separate caches at the same location. The barcode representing a specific caching event was transiently reactivated whenever a bird later interacted with the same cache - for example, to retrieve food. Barcodes co-occurred with conventional place cell activity6,7, as well as location-independent responses to cached seeds. We propose that barcodes are signatures of episodic memories evoked during memory recall. These patterns assign a unique identifier to each event and may be a mechanism for rapid formation and storage of many non-interfering memories.

3.
Curr Biol ; 33(12): 2465-2477.e7, 2023 06 19.
Article in English | MEDLINE | ID: mdl-37295426

ABSTRACT

The mammalian entorhinal cortex routes inputs from diverse sources into the hippocampus. This information is mixed and expressed in the activity of many specialized entorhinal cell types, which are considered indispensable for hippocampal function. However, functionally similar hippocampi exist even in non-mammals that lack an obvious entorhinal cortex or, generally, any layered cortex. To address this dilemma, we mapped extrinsic hippocampal connections in chickadees, whose hippocampi are used for remembering numerous food caches. We found a well-delineated structure in these birds that is topologically similar to the entorhinal cortex and interfaces between the hippocampus and other pallial regions. Recordings of this structure revealed entorhinal-like activity, including border and multi-field grid-like cells. These cells were localized to the subregion predicted by anatomical mapping to match the dorsomedial entorhinal cortex. Our findings uncover an anatomical and physiological equivalence of vastly different brains, suggesting a fundamental nature of entorhinal-like computations for hippocampal function.


Subject(s)
Entorhinal Cortex , Songbirds , Animals , Entorhinal Cortex/physiology , Hippocampus/physiology , Neurons/physiology , Brain , Mammals
4.
Elife ; 122023 05 30.
Article in English | MEDLINE | ID: mdl-37252761

ABSTRACT

Behaviors emerge via a combination of experience and innate predispositions. As the brain matures, it undergoes major changes in cellular, network, and functional properties that can be due to sensory experience as well as developmental processes. In normal birdsong learning, neural sequences emerge to control song syllables learned from a tutor. Here, we disambiguate the role of tutor experience and development in neural sequence formation by delaying exposure to a tutor. Using functional calcium imaging, we observe neural sequences in the absence of tutoring, demonstrating that tutor experience is not necessary for the formation of sequences. However, after exposure to a tutor, pre-existing sequences can become tightly associated with new song syllables. Since we delayed tutoring, only half our birds learned new syllables following tutor exposure. The birds that failed to learn were the birds in which pre-tutoring neural sequences were most 'crystallized,' that is, already tightly associated with their (untutored) song.


Subject(s)
Finches , Animals , Vocalization, Animal , Learning , Social Isolation
5.
Elife ; 122023 03 16.
Article in English | MEDLINE | ID: mdl-36928104

ABSTRACT

The predictive nature of the hippocampus is thought to be useful for memory-guided cognitive behaviors. Inspired by the reinforcement learning literature, this notion has been formalized as a predictive map called the successor representation (SR). The SR captures a number of observations about hippocampal activity. However, the algorithm does not provide a neural mechanism for how such representations arise. Here, we show the dynamics of a recurrent neural network naturally calculate the SR when the synaptic weights match the transition probability matrix. Interestingly, the predictive horizon can be flexibly modulated simply by changing the network gain. We derive simple, biologically plausible learning rules to learn the SR in a recurrent network. We test our model with realistic inputs and match hippocampal data recorded during random foraging. Taken together, our results suggest that the SR is more accessible in neural circuits than previously thought and can support a broad range of cognitive functions.


Memories are an important part of how we think, understand the world around us, and plan out future actions. In the brain, memories are thought to be stored in a region called the hippocampus. When memories are formed, neurons store events that occur around the same time together. This might explain why often, in the brains of animals, the activity associated with retrieving memories is not just a snapshot of what happened at a specific moment-- it can also include information about what the animal might experience next. This can have a clear utility if animals use memories to predict what they might experience next and plan out future actions. Mathematically, this notion of predictiveness can be summarized by an algorithm known as the successor representation. This algorithm describes what the activity of neurons in the hippocampus looks like when retrieving memories and making predictions based on them. However, even though the successor representation can computationally reproduce the activity seen in the hippocampus when it is making predictions, it is unclear what biological mechanisms underpin this computation in the brain. Fang et al. approached this problem by trying to build a model that could generate the same activity patterns computed by the successor representation using only biological mechanisms known to exist in the hippocampus. First, they used computational methods to design a network of neurons that had the biological properties of neural networks in the hippocampus. They then used the network to simulate neural activity. The results show that the activity of the network they designed was able to exactly match the successor representation. Additionally, the data resulting from the simulated activity in the network fitted experimental observations of hippocampal activity in Tufted Titmice. One advantage of the network designed by Fang et al. is that it can generate predictions in flexible ways,. That is, it canmake both short and long-term predictions from what an individual is experiencing at the moment. This flexibility means that the network can be used to simulate how the hippocampus learns in a variety of cognitive tasks. Additionally, the network is robust to different conditions. Given that the brain has to be able to store memories in many different situations, this is a promising indication that this network may be a reasonable model of how the brain learns. The results of Fang et al. lay the groundwork for connecting biological mechanisms in the hippocampus at the cellular level to cognitive effects, an essential step to understanding the hippocampus, as well as its role in health and disease. For instance, their network may provide a concrete approach to studying how disruptions to the ways neurons make and break connections can impair memory formation. More generally, better models of the biological mechanisms involved in making computations in the hippocampus can help scientists better understand and test out theories about how memories are formed and stored in the brain.


Subject(s)
Learning , Neural Networks, Computer , Hippocampus , Reinforcement, Psychology , Algorithms
6.
bioRxiv ; 2023 Jan 06.
Article in English | MEDLINE | ID: mdl-36711539

ABSTRACT

The mammalian entorhinal cortex routes inputs from diverse sources into the hippocampus. This information is mixed and expressed in the activity of many specialized entorhinal cell types, which are considered indispensable for hippocampal function. However, functionally similar hippocampi exist even in non-mammals that lack an obvious entorhinal cortex, or generally any layered cortex. To address this dilemma, we mapped extrinsic hippocampal connections in chickadees, whose hippocampi are used for remembering numerous food caches. We found a well-delineated structure in these birds that is topologically similar to the entorhinal cortex and interfaces between the hippocampus and other pallial regions. Recordings of this structure revealed entorhinal-like activity, including border and multi-field grid-like cells. These cells were localized to the subregion predicted by anatomical mapping to match the dorsomedial entorhinal cortex. Our findings uncover an anatomical and physiological equivalence of vastly different brains, suggesting a fundamental nature of entorhinal-like computations for hippocampal function.

7.
Nat Commun ; 11(1): 5029, 2020 10 06.
Article in English | MEDLINE | ID: mdl-33024101

ABSTRACT

How are brain circuits constructed to achieve complex goals? The brains of young songbirds develop motor circuits that achieve the goal of imitating a specific tutor song to which they are exposed. Here, we set out to examine how song-generating circuits may be influenced early in song learning by a cortical region (NIf) at the interface between auditory and motor systems. Single-unit recordings reveal that, during juvenile babbling, NIf neurons burst at syllable onsets, with some neurons exhibiting selectivity for particular emerging syllable types. When juvenile birds listen to their tutor, NIf neurons are also activated at tutor syllable onsets, and are often selective for particular syllable types. We examine a simple computational model in which tutor exposure imprints the correct number of syllable patterns as ensembles in an interconnected NIf network. These ensembles are then reactivated during singing to train a set of syllable sequences in the motor network.


Subject(s)
Finches/physiology , Neurons/physiology , Vocalization, Animal/physiology , Age Factors , Animals , Auditory Perception/physiology , Electrophysiology/methods , Female , Learning , Male , Models, Biological
8.
Elife ; 82019 02 05.
Article in English | MEDLINE | ID: mdl-30719973

ABSTRACT

Identifying low-dimensional features that describe large-scale neural recordings is a major challenge in neuroscience. Repeated temporal patterns (sequences) are thought to be a salient feature of neural dynamics, but are not succinctly captured by traditional dimensionality reduction techniques. Here, we describe a software toolbox-called seqNMF-with new methods for extracting informative, non-redundant, sequences from high-dimensional neural data, testing the significance of these extracted patterns, and assessing the prevalence of sequential structure in data. We test these methods on simulated data under multiple noise conditions, and on several real neural and behavioral datas. In hippocampal data, seqNMF identifies neural sequences that match those calculated manually by reference to behavioral events. In songbird data, seqNMF discovers neural sequences in untutored birds that lack stereotyped songs. Thus, by identifying temporal structure directly from neural data, seqNMF enables dissection of complex neural circuits without relying on temporal references from stimuli or behavioral outputs.


Subject(s)
Brain/physiology , Data Mining/methods , Neurosciences/methods , Software , Action Potentials , Animals , Rats , Songbirds
9.
Nature ; 528(7582): 352-7, 2015 Dec 17.
Article in English | MEDLINE | ID: mdl-26618871

ABSTRACT

Neural sequences are a fundamental feature of brain dynamics underlying diverse behaviours, but the mechanisms by which they develop during learning remain unknown. Songbirds learn vocalizations composed of syllables; in adult birds, each syllable is produced by a different sequence of action potential bursts in the premotor cortical area HVC. Here we carried out recordings of large populations of HVC neurons in singing juvenile birds throughout learning to examine the emergence of neural sequences. Early in vocal development, HVC neurons begin producing rhythmic bursts, temporally locked to a 'prototype' syllable. Different neurons are active at different latencies relative to syllable onset to form a continuous sequence. Through development, as new syllables emerge from the prototype syllable, initially highly overlapping burst sequences become increasingly distinct. We propose a mechanistic model in which multiple neural sequences can emerge from the growth and splitting of a common precursor sequence.


Subject(s)
Finches/physiology , Models, Neurological , Neural Pathways/physiology , Vocalization, Animal/physiology , Animals , Learning/physiology , Male , Motor Cortex/cytology , Motor Cortex/physiology
10.
Cold Spring Harb Protoc ; 2014(12): 1273-83, 2014 Oct 23.
Article in English | MEDLINE | ID: mdl-25342072

ABSTRACT

The zebra finch is an important model for investigating the neural mechanisms that underlie vocal production and learning. Previous anatomical and gene expression studies have identified an interconnected set of brain areas in this organism that are important for singing. To advance our understanding of how these various brain areas act together to learn and produce a highly stereotyped song, it is necessary to record the activity of individual neurons during singing. Here, we present a protocol for recording single-unit activity in freely moving zebra finches during singing using a miniature, motorized microdrive. It includes procedures for both the microdrive implant surgery and the electrophysiological recordings. There are several advantages of this technique: (1) high-impedance electrodes can be used in the microdrive to obtain well-isolated single units; (2) a motorized microdrive is used to remotely control the electrode position, allowing neurons to be isolated without handling the bird, and (3) a lateral positioner is used to move electrodes into fresh tissue before each penetration, allowing recordings from well-isolated neurons over the course of several weeks. We also describe the application of the antidromic stimulation and the spike collision test to identify neurons based on the axonal projection patterns.


Subject(s)
Finches/physiology , Neurons/physiology , Tape Recording/methods , Vocalization, Animal/physiology , Amplifiers, Electronic , Animals , Electrophysiological Phenomena , Female , Male
11.
J Neurosci ; 32(44): 15309-17, 2012 Oct 31.
Article in English | MEDLINE | ID: mdl-23115169

ABSTRACT

In primates, the sense of touch has traditionally been considered to be a spatial modality, drawing an analogy to the visual system. In this view, stimuli are encoded in spatial patterns of activity over the sheet of receptors embedded in the skin. We propose that the spatial processing mode is complemented by a temporal one. Indeed, the transduction and processing of complex, high-frequency skin vibrations have been shown to play an important role in tactile texture perception, and the frequency composition of vibrations shapes the evoked percept. Mechanoreceptive afferents innervating the glabrous skin exhibit temporal patterning in their responses, but the importance and behavioral relevance of spike timing, particularly for naturalistic stimuli, remains to be elucidated. Based on neurophysiological recordings from Rhesus macaques, we show that spike timing conveys information about the frequency composition of skin vibrations, both for individual afferents and for afferent populations, and that the temporal fidelity varies across afferent class. Furthermore, the perception of skin vibrations, measured in human subjects, is better predicted when spike timing is taken into account, and the resolution that predicts perception best matches the optimal resolution of the respective afferent classes. In light of these results, the peripheral representation of complex skin vibrations draws a powerful analogy with the auditory and vibrissal systems.


Subject(s)
Form Perception/physiology , Touch Perception/physiology , Adolescent , Algorithms , Animals , Data Interpretation, Statistical , Electrophysiological Phenomena , Female , Humans , Macaca mulatta , Male , Neurons, Afferent/physiology , Physical Stimulation , Psychophysics , Skin/innervation , Vibration , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...