Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Chemistry ; 7(14): 3106-21, 2001 Jul 16.
Article in English | MEDLINE | ID: mdl-11495438

ABSTRACT

A new class of phosphinine/rhodium catalysts for the hydroformylation of terminal and internal alkenes is presented in this study. A series of phosphabenzenes 1-14 has been prepared by condensation of phosphane or tris(trimethylsilyl)phosphane with the corresponding pyrylium salt. Trans-[(phosphabenzene)2RhCl(CO)] complexes 21-25 have been prepared and studied spectroscopically and by X-ray crystal-structure analysis. The hydroformylation of oct-1-ene has been used to identify optimal catalyst preformation and reaction conditions. Hydroformylation studies with 15 monophosphabenzenes have been performed. The catalytic performance is dominated by steric influences, with the phosphabenzene 8/rhodium system being the most active catalyst. Turnover frequencies of up to 45370 h(-1) for the hydroformylation of oct-1-ene have been determined. In further studies, hydroformylation activity toward more highly substituted alkenes was investigated and compared with the standard industrial triphenylphosphane/rhodium catalyst. The reactivity differences between the phosphabenzene and the triphenylphosphane catalyst increase on going to the more highly substituted alkenes. Even tetrasubstituted alkenes reacted with the phosphabenzene catalyst, whereas the triphenylphosphane system failed to give any product. In situ pressure NMR experiments have been performed to identify the resting state of the catalyst. A monophosphabenzene complex [(phosphinine 8)Ir(CO)3H] could be detected as the predominant catalyst resting state.

SELECTION OF CITATIONS
SEARCH DETAIL
...