Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
Lab Invest ; 98(5): 682-691, 2018 05.
Article in English | MEDLINE | ID: mdl-29453401

ABSTRACT

Sonic Hedgehog (Shh) signaling induces neovascularization and angiogenesis. It is not known whether the hedgehog signaling pathway in endothelial cells is essential to angiogenesis. Smoothened (Smo) transduces hedgehog signaling across the cell membrane. This study assessed whether endothelial Smoothened-dependent Shh signaling is required for Shh-mediated angiogenesis and ischemic tissue repair. Endothelial-specific smoothened knockout mice, eSmoNull were created using Cre-lox recombination system. eSmoNull mice had no observable phenotype at baseline and showed normal cardiac function. Smoothened in CD31+ cells isolated from eSmoNull hearts was significantly reduced compared to CD31+ cells from eSmoWT littermate control hearts. Fluorescence immunostaining of eSmoNull heart sections showed Smo expression in endothelial cells was abolished. The hind-limb ischemia (HLI) model was used to assess the response to ischemic injury. Perfusion ratio, limb motor function, and limb necrosis were not significantly different after HLI between eSmoNull mice and eSmoWT. Capillary densities in the ischemic limb in eSmoNull mice were also similar to eSmoWT at 4 weeks after HLI. Next, response to exogenous Shh was assessed in the corneal angiogenesis model. There was no significant difference in corneal angiogenesis induced by administration of Shh pellets between eSmoWT and eSmoNull mice. Furthermore, in vitro experiments demonstrated that direct Shh had limited effects on endothelial cell proliferation and migration. However, conditioned media from Shh-treated fibroblasts had a more potent effect on endothelial cell proliferation and migration than non-treated conditioned media. Furthermore, Shh treatment of fibroblasts dramatically stimulated angiogenic growth factor expression, including PDGF-B, VEGF-A, HGF and IGF. PDGF-B was the most upregulated and may contribute to the large neo-vessels associated with Shh-induced angiogenesis. Taken together, these data demonstrate that Shh signaling via Smoothened in endothelial cells is not required for angiogenesis and ischemic tissue repair. Shh signaling via stromal cells likely mediates its angiogenic effects.


Subject(s)
Endothelial Cells/physiology , Hedgehog Proteins/physiology , Ischemia/physiopathology , Neovascularization, Physiologic , Signal Transduction/physiology , Smoothened Receptor/physiology , Animals , Cells, Cultured , Fibroblasts/physiology , Hindlimb/blood supply , Male , Mice
2.
Cell Rep ; 21(6): 1471-1480, 2017 Nov 07.
Article in English | MEDLINE | ID: mdl-29117554

ABSTRACT

Aging drives the occurrence of numerous diseases, including cardiovascular disease (CVD). Recent studies indicate that blood from young mice reduces age-associated pathologies. However, the "anti-aging" factors in juvenile circulation remain poorly identified. Here, we characterize the role of the apelinergic axis in mammalian aging and identify apelin as an anti-aging factor. The expression of apelin (apln) and its receptor (aplnr) exhibits an age-dependent decline in multiple organs. Reduced apln signaling perturbs organismal homeostasis; mice harboring genetic deficiency of aplnr or apln exhibit enhanced cardiovascular, renal, and reproductive aging. Genetic or pharmacological abrogation of apln signaling also induces cellular senescence mediated, in part, by the activation of senescence-promoting transcription factors. Conversely, restoration of apln in 15-month-old wild-type mice reduces cardiac hypertrophy and exercise-induced hypertensive response. Additionally, apln-restored mice exhibit enhanced vigor and rejuvenated behavioral and circadian phenotypes. Hence, a declining apelinergic axis promotes aging, whereas its restoration extends the murine healthspan.


Subject(s)
Aging/genetics , Apelin Receptors/genetics , Apelin/genetics , Down-Regulation , Animals , Apelin/deficiency , Apelin/metabolism , Apelin Receptors/deficiency , Apelin Receptors/metabolism , Cardiomegaly/metabolism , Cardiomegaly/pathology , Cell Line , Coronary Vessels/cytology , Cyclin-Dependent Kinase Inhibitor p21/genetics , Cyclin-Dependent Kinase Inhibitor p21/metabolism , Endothelial Cells/cytology , Endothelial Cells/metabolism , Female , Genetic Vectors/genetics , Genetic Vectors/metabolism , Humans , Hypertension/etiology , Hypertension/metabolism , Lentivirus/genetics , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Signal Transduction
3.
J Am Coll Cardiol ; 66(20): 2214-2226, 2015 11 17.
Article in English | MEDLINE | ID: mdl-26564600

ABSTRACT

BACKGROUND: MicroRNA (miR) dysregulation in the myocardium has been implicated in cardiac remodeling after injury or stress. OBJECTIVES: The aim of this study was to explore the role of miR in human CD34(+) cell (hCD34(+)) dysfunction in vivo after transplantation into the myocardium under ischemia-reperfusion (I-R) conditions. METHODS: In response to inflammatory stimuli, the miR array profile of endothelial progenitor cells was analyzed using a polymerase chain reaction-based miR microarray. miR-377 expression was assessed in myocardial tissue from human patients with heart failure (HF). We investigated the effect of miR-377 inhibition on an hCD34(+) cell angiogenic proteome profile in vitro and on cardiac repair and function after I-R injury in immunodeficient mice. RESULTS: The miR array data from endothelial progenitor cells in response to inflammatory stimuli indicated changes in numerous miR, with a robust decrease in the levels of miR-377. Human cardiac biopsies from patients with HF showed significant increases in miR-377 expression compared with nonfailing control hearts. The proteome profile of hCD34(+) cells transfected with miR-377 mimics showed significant decrease in the levels of proangiogenic proteins versus nonspecific control-transfected cells. We also validated that serine/threonine kinase 35 is a target of miR-377 using a dual luciferase reporter assay. In a mouse model of myocardial I-R, intramyocardial transplantation of miR-377 silenced hCD34(+) cells in immunodeficient mice, promoting neovascularization (at 28 days, post-I-R) and lower interstitial fibrosis, leading to improved left ventricular function. CONCLUSIONS: These findings indicate that HF increased miR-377 expression in the myocardium, which is detrimental to stem cell function, and transplantation of miR-377 knockdown hCD34(+) cells into ischemic myocardium promoted their angiogenic ability, attenuating left ventricular remodeling and cardiac fibrosis.


Subject(s)
Endothelial Progenitor Cells/metabolism , Heart Failure/metabolism , MicroRNAs/metabolism , Myocardium/metabolism , Reperfusion Injury/metabolism , Adult , Animals , Antigens, CD34 , Female , Heart , Humans , Inflammation/pathology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Myocardium/cytology , Myocardium/pathology , Neovascularization, Physiologic/physiology , Reperfusion Injury/pathology , Reverse Transcriptase Polymerase Chain Reaction
4.
Stem Cells ; 33(12): 3519-29, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26235810

ABSTRACT

Poor survival and function of transplanted cells in ischemic and inflamed myocardium likely compromises the functional benefit of stem cell-based therapies. We have earlier reported that co-administration of interleukin (IL)-10 and BMPAC enhances cell survival and improves left ventricular (LV) functions after acute myocardial infarction (MI) in mice. We hypothesized that IL-10 regulates microRNA-375 (miR-375) signaling in BMPACs to enhance their survival and function in ischemic myocardium after MI and attenuates left ventricular dysfunction after MI. miR-375 expression is significantly upregulated in BMPACs upon exposure to inflammatory/hypoxic stimulus and also after MI. IL-10 knockout mice display significantly elevated miR-375 levels. We report that ex vivo miR-375 knockdown in BMPAC before transplantation in the ischemic myocardium after MI significantly improve the survival and retention of transplanted BMPACs and also BMPAC-mediated post-infarct repair, neovascularization, and LV functions. Our in vitro studies revealed that knockdown of miR-375-enhanced BMPAC proliferation and tube formation and inhibited apoptosis; over expression of miR-375 in BMPAC had opposite effects. Mechanistically, miR-375 negatively regulated 3-phosphoinositide-dependent protein kinase-1 (PDK-1) expression and PDK-1-mediated activation of PI3kinase/AKT signaling. Interestingly, BMPAC isolated from IL-10-deficient mice showed elevated basal levels of miR-375 and exhibited functional deficiencies, which were partly rescued by miR-375 knockdown, enhancing BMPAC function in vitro and in vivo. Taken together, our studies suggest that miR-375 is negatively associated with BMPAC function and survival and IL-10-mediated repression of miR-375 enhances BMPAC survival and function.


Subject(s)
Bone Marrow Cells/metabolism , Interleukin-10/metabolism , MicroRNAs/metabolism , Myocardial Infarction/metabolism , Myocardium/metabolism , Stem Cell Transplantation , Stem Cells/metabolism , Animals , Bone Marrow Cells/pathology , Gene Knockdown Techniques , Interleukin-10/genetics , Mice , Mice, Knockout , MicroRNAs/genetics , Myocardial Infarction/genetics , Myocardial Infarction/therapy , Myocardium/pathology , Stem Cells/pathology
5.
Exp Dermatol ; 24(10): 773-8, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26010430

ABSTRACT

Delayed wound healing is one of the major complications in diabetes and is characterized by chronic proinflammatory response, and abnormalities in angiogenesis and collagen deposition. Sirtuin family proteins regulate numerous pathophysiological processes, including those involved in promotion of longevity, DNA repair, glycolysis and inflammation. However, the role of sirtuin 6 (SIRT6), a NAD+-dependent nuclear deacetylase, in wound healing specifically under diabetic condition remains unclear. To analyse the role of SIRT6 in cutaneous wound healing, paired 6-mm stented wound was created in diabetic db/db mice and injected siRNA against SIRT6 in the wound margins (transfection agent alone and nonsense siRNA served as controls). Wound time to closure was assessed by digital planimetry, and wounds were harvested for histology, immunohistochemistry and Western blotting. SIRT6-siRNA-treated diabetic wound showed impaired healing, which was associated with reduced capillary density (CD31-staining vessels) when compared to control treatment. Interestingly, SIRT6 deficiency decreased vascular endothelial growth factor expression and proliferation markers in the wounds. Furthermore, SIRT6 ablation in diabetic wound promotes nuclear factor-κB (NF-κB) activation resulting in increased expression of proinflammatory markers (intercellular adhesion molecule-1, vascular cell adhesion molecule-1, tumor necrosis factor-α and interleukin-1ß) and increased oxidative stress. Collectively, our findings demonstrate that loss of SIRT6 in cutaneous wound aggravates proinflammatory response by increasing NF-κB activation, oxidative stress and decrease in angiogenesis in the diabetic mice. Based on these findings, we speculate that the activation of SIRT6 signalling might be a potential therapeutic approach for promoting wound healing in diabetics.


Subject(s)
Diabetes Complications/physiopathology , Re-Epithelialization/genetics , Sirtuins/deficiency , Sirtuins/genetics , Skin/metabolism , Animals , Cell Proliferation/genetics , Gene Knockdown Techniques , Granulation Tissue/physiopathology , Intercellular Adhesion Molecule-1/analysis , Interleukin-1beta/metabolism , Male , Mice , NF-kappa B/metabolism , Neovascularization, Physiologic/genetics , Oxidative Stress/genetics , RNA, Small Interfering/genetics , Signal Transduction/genetics , Sirtuins/metabolism , Skin/chemistry , Time Factors , Tumor Necrosis Factor-alpha/metabolism , Vascular Cell Adhesion Molecule-1/analysis
6.
J Biol Chem ; 289(4): 2099-111, 2014 Jan 24.
Article in English | MEDLINE | ID: mdl-24297175

ABSTRACT

The Kv7 family (Kv7.1-7.5) of voltage-activated potassium channels contributes to the maintenance of resting membrane potential in excitable cells. Previously, we provided pharmacological and electrophysiological evidence that Kv7.4 and Kv7.5 form predominantly heteromeric channels and that Kv7 activity is regulated by protein kinase C (PKC) in response to vasoconstrictors in vascular smooth muscle cells. Direct evidence for Kv7.4/7.5 heteromer formation, however, is lacking. Furthermore, it remains to be determined whether both subunits are regulated by PKC. Utilizing proximity ligation assays to visualize single molecule interactions, we now show that Kv7.4/Kv.7.5 heteromers are endogenously expressed in vascular smooth muscle cells. Introduction of dominant-negative Kv7.4 and Kv7.5 subunits in mesenteric artery myocytes reduced endogenous Kv7 currents by 84 and 76%, respectively. Expression of an inducible protein kinase Cα (PKCα) translocation system revealed that PKCα activation is sufficient to suppress endogenous Kv7 currents in A7r5 rat aortic and mesenteric artery smooth muscle cells. Arginine vasopressin (100 and 500 pm) and the PKC activator phorbol 12-myristate 13-acetate (1 nm) each inhibited human (h) Kv7.5 and hKv7.4/7.5, but not hKv7.4 channels expressed in A7r5 cells. A decrease in hKv7.5 and hKv7.4/7.5 current densities was associated with an increase in PKC-dependent phosphorylation of the channel proteins. These findings provide further evidence for a differential regulation of Kv7.4 and Kv7.5 channel subunits by PKC-dependent phosphorylation and new mechanistic insights into the role of heteromeric subunit assembly for regulation of vascular Kv7 channels.


Subject(s)
KCNQ Potassium Channels/metabolism , Myocytes, Smooth Muscle/metabolism , Protein Kinase C-alpha/metabolism , Animals , Aorta/cytology , Aorta/metabolism , Arginine Vasopressin/pharmacology , Carcinogens/pharmacology , Cell Line , Humans , KCNQ Potassium Channels/genetics , Male , Mesenteric Arteries/cytology , Mesenteric Arteries/metabolism , Mutation, Missense , Myocytes, Smooth Muscle/cytology , Protein Kinase C-alpha/genetics , Rats , Rats, Sprague-Dawley , Tetradecanoylphorbol Acetate/pharmacology , Vasoconstrictor Agents/pharmacology
7.
J Biol Chem ; 288(25): 18022-34, 2013 Jun 21.
Article in English | MEDLINE | ID: mdl-23645678

ABSTRACT

We have shown previously that estrogen (estradiol, E2) supplementation enhances voluntary alcohol consumption in ovariectomized female rodents and that increased alcohol consumption impairs ischemic hind limb vascular repair. However, the effect of E2-induced alcohol consumption on post-infarct myocardial repair and on the phenotypic/functional properties of endothelial progenitor cells (EPCs) is not known. Additionally, the molecular signaling of alcohol-estrogen interactions remains to be elucidated. This study examined the effect of E2-induced increases in ethanol consumption on post-infarct myocardial function/repair. Ovariectomized female mice, implanted with 17ß-E2 or placebo pellets were given access to alcohol for 6 weeks and subjected to acute myocardial infarction. Left ventricular functions were consistently depressed in mice consuming ethanol compared with those receiving only E2. Alcohol-consuming mice also displayed significantly increased infarct size and reduced capillary density. Ethanol consumption also reduced E2-induced mobilization and homing of EPCs to injured myocardium compared with the E2-alone group. In vitro, exposure of EPCs to ethanol suppressed E2-induced proliferation, survival, and migration and markedly altered E2-induced estrogen receptor-dependent cell survival signaling and gene expression. Furthermore, ethanol-mediated suppression of EPC biology was endothelial nitric oxide synthase-dependent because endothelial nitric oxide synthase-null mice displayed an exaggerated response to post-acute myocardial infarction left ventricular functions. These data suggest that E2 modulation of alcohol consumption, and the ensuing EPC dysfunction, may negatively compete with the beneficial effects of estrogen on post-infarct myocardial repair.


Subject(s)
Cell Movement/drug effects , Endothelial Cells/drug effects , Estradiol/pharmacology , Ethanol/pharmacology , Myocardium/metabolism , Stem Cells/drug effects , Animals , Apoptosis/drug effects , Blotting, Western , Cell Survival/drug effects , Cells, Cultured , Endothelial Cells/metabolism , Endothelial Cells/physiology , Estradiol/metabolism , Estrogens/metabolism , Estrogens/pharmacology , Female , Mice , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Myocardial Infarction/genetics , Myocardial Infarction/metabolism , Myocardial Infarction/physiopathology , Myocardium/pathology , Nitric Oxide Synthase Type III/deficiency , Nitric Oxide Synthase Type III/genetics , Ovariectomy , Protein Binding/drug effects , Receptors, Estrogen/metabolism , Stem Cells/metabolism , Stem Cells/physiology
8.
PLoS One ; 8(4): e60161, 2013.
Article in English | MEDLINE | ID: mdl-23560074

ABSTRACT

Diabetes is associated with a higher incidence of myocardial infarction (MI) and increased risk for adverse vascular and fibrogenic events post-MI. Bone marrow-derived progenitor cell (BMPC) therapy has been shown to promote neovascularization, decrease infarct area and attenuate left ventricular (LV) dysfunction after MI. Unlike vascular effects, the anti-fibrosis mechanisms of BMPC, specifically under diabetic conditions, are poorly understood. We demonstrated that intramyocardial delivery of BMPCs in infarcted diabetic db/db mice significantly down-regulates profibrotic miRNA-155 in the myocardium and improves LV remodeling and function. Furthermore, inhibition of paracrine factor hepatocyte growth factor (HGF) signaling in vivo suppressed the BMPC-mediated inhibition of miR-155 expression and the associated protective effect on cardiac fibrosis and function. In vitro studies confirmed that the conditioned media of BMPC inhibited miR-155 expression and profibrotic signaling in mouse cardiac fibroblasts under diabetic conditions. However, neutralizing antibodies directed against HGF blocked these effects. Furthermore, miR-155 over-expression in mouse cardiac fibroblasts inhibited antifibrotic Sloan-Kettering Institute proto-oncogene (Ski) and Ski-related novel gene, non-Alu-containing (SnoN) signaling and abrogated antifibrogenic response of HGF. Together, our data demonstrates that paracrine regulation of cardiac miRNAs by transplanted BMPCs contributes to the antifibrotic effects of BMPC therapy. BMPCs release HGF, which inhibits miR-155-mediated profibrosis signaling, thereby preventing cardiac fibrosis. These data suggest that targeting miR-155 might serve as a potential therapy against cardiac fibrosis in the diabetic heart.


Subject(s)
Bone Marrow Transplantation , Diabetes Mellitus/therapy , Hematopoietic Stem Cell Transplantation , MicroRNAs/antagonists & inhibitors , Myocardial Infarction/therapy , Ventricular Dysfunction, Left/therapy , Animals , Cells, Cultured , Culture Media, Conditioned/pharmacology , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Diabetes Mellitus/genetics , Diabetes Mellitus/metabolism , Diabetes Mellitus/pathology , Fibroblasts/cytology , Fibroblasts/drug effects , Fibroblasts/metabolism , Fibrosis , Gene Expression Regulation , Hematopoietic Stem Cells/cytology , Hematopoietic Stem Cells/drug effects , Hematopoietic Stem Cells/metabolism , Hepatocyte Growth Factor/metabolism , Hepatocyte Growth Factor/pharmacology , Mice , MicroRNAs/genetics , MicroRNAs/metabolism , Myocardial Infarction/genetics , Myocardial Infarction/metabolism , Myocardial Infarction/pathology , Proto-Oncogene Proteins/genetics , Proto-Oncogene Proteins/metabolism , Signal Transduction , Ventricular Dysfunction, Left/genetics , Ventricular Dysfunction, Left/metabolism , Ventricular Dysfunction, Left/pathology , Ventricular Remodeling/drug effects , Ventricular Remodeling/genetics
9.
Circ Res ; 111(2): 180-90, 2012 Jul 06.
Article in English | MEDLINE | ID: mdl-22589372

ABSTRACT

RATIONALE: Although bone marrow endothelial progenitor cell (EPC)-based therapies improve the symptoms in patients with ischemic heart disease, their limited plasticity and decreased function in patients with existing heart disease limit the full benefit of EPC therapy for cardiac regenerative medicine. OBJECTIVE: We hypothesized that reprogramming mouse or human EPCs, or both, using small molecules targeting key epigenetic repressive marks would lead to a global increase in active gene transcription, induce their cardiomyogenic potential, and enhance their inherent angiogenic potential. METHOD AND RESULTS: Mouse Lin-Sca1(+)CD31(+) EPCs and human CD34(+) cells were treated with inhibitors of DNA methyltransferases (5-Azacytidine), histone deacetylases (valproic acid), and G9a histone dimethyltransferase. A 48-hour treatment led to global increase in active transcriptome, including the reactivation of pluripotency-associated and cardiomyocyte-specific mRNA expression, whereas endothelial cell-specific genes were significantly upregulated. When cultured under appropriate differentiation conditions, reprogrammed EPCs showed efficient differentiation into cardiomyocytes. Treatment with epigenetic-modifying agents show marked increase in histone acetylation on cardiomyocyte and pluripotent cell-specific gene promoters. Intramyocardial transplantation of reprogrammed mouse and human EPCs in an acute myocardial infarction mouse model showed significant improvement in ventricular functions, which was histologically supported by their de novo cardiomyocyte differentiation and increased capillary density and reduced fibrosis. Importantly, cell transplantation was safe and did not form teratomas. CONCLUSIONS: Taken together, our results suggest that epigenetically reprogrammed EPCs display a safe, more plastic phenotype and improve postinfarct cardiac repair by both neocardiomyogenesis and neovascularization.


Subject(s)
Cell Differentiation/genetics , Endothelial Cells/physiology , Epigenesis, Genetic/genetics , Myocardial Ischemia/genetics , Myocytes, Cardiac/physiology , Stem Cell Transplantation/methods , Up-Regulation/genetics , Animals , Cells, Cultured , Endothelial Cells/pathology , Endothelial Cells/transplantation , Endothelium, Vascular/pathology , Endothelium, Vascular/physiology , Endothelium, Vascular/transplantation , Humans , Mice , Mice, Inbred C57BL , Mice, Transgenic , Myocardial Ischemia/pathology , Myocardial Ischemia/surgery , Myocytes, Cardiac/pathology , Neovascularization, Physiologic/genetics , Stem Cells/pathology , Stem Cells/physiology , Treatment Outcome
10.
Circ Res ; 111(3): 312-21, 2012 Jul 20.
Article in English | MEDLINE | ID: mdl-22581926

ABSTRACT

RATIONALE: Ischemic cardiovascular disease represents one of the largest epidemics currently facing the aging population. Current literature has illustrated the efficacy of autologous, stem cell therapies as novel strategies for treating these disorders. The CD34+ hematopoetic stem cell has shown significant promise in addressing myocardial ischemia by promoting angiogenesis that helps preserve the functionality of ischemic myocardium. Unfortunately, both viability and angiogenic quality of autologous CD34+ cells decline with advanced age and diminished cardiovascular health. OBJECTIVE: To offset age- and health-related angiogenic declines in CD34+ cells, we explored whether the therapeutic efficacy of human CD34+ cells could be enhanced by augmenting their secretion of the known angiogenic factor, sonic hedgehog (Shh). METHODS AND RESULTS: When injected into the border zone of mice after acute myocardial infarction, Shh-modified CD34+ cells (CD34(Shh)) protected against ventricular dilation and cardiac functional declines associated with acute myocardial infarction. Treatment with CD34(Shh) also reduced infarct size and increased border zone capillary density compared with unmodified CD34 cells or cells transfected with the empty vector. CD34(Shh) primarily store and secrete Shh protein in exosomes and this storage process appears to be cell-type specific. In vitro analysis of exosomes derived from CD34(Shh) revealed that (1) exosomes transfer Shh protein to other cell types, and (2) exosomal transfer of functional Shh elicits induction of the canonical Shh signaling pathway in recipient cells. CONCLUSIONS: Exosome-mediated delivery of Shh to ischemic myocardium represents a major mechanism explaining the observed preservation of cardiac function in mice treated with CD34(Shh) cells.


Subject(s)
Antigens, CD34/administration & dosage , Hedgehog Proteins/administration & dosage , Hematopoietic Stem Cell Transplantation/methods , Myocardial Infarction/surgery , Animals , Antigens, CD34/therapeutic use , Cells, Cultured , Hedgehog Proteins/therapeutic use , Humans , Male , Mice , Mice, Inbred NOD , Mice, Nude , Mice, SCID , Myocardial Infarction/physiopathology , NIH 3T3 Cells , Ventricular Dysfunction/physiopathology , Ventricular Dysfunction/surgery
11.
Tex Heart Inst J ; 38(5): 474-85, 2011.
Article in English | MEDLINE | ID: mdl-22163120

ABSTRACT

Bone marrow-derived CD34(+) cells are a well-characterized population of stem cells that have traditionally been used clinically to reconstitute the hematopoietic system after radiation or chemotherapy. More recently, CD34(+) cells have also been shown to induce therapeutic angiogenesis in animal models of myocardial, peripheral, and cerebral ischemia. The mechanism by which CD34(+) cells promote therapeutic angiogenesis is not completely understood, although evidence supports both direct incorporation of the cells into the expanding vasculature and paracrine secretion of angiogenic growth factors that support the developing microvasculature. Phase I and phase II clinical trials have explored the usefulness of CD34(+) cells in the treatment of ischemic conditions in human patients. As the population of patients diagnosed with some form of ischemic cardiovascular disease expands, the need for more effective treatments also grows, especially in patients who are refractory to standard pharmacologic or revascularization treatment. As phase III trials begin, CD34(+) cells will be definitively tested as a novel treatment for myocardial and peripheral ischemia. This review will discuss what is known about the CD34 antigen and the cells that harbor it, the preclinical evidence supporting the therapeutic potential of CD34(+) cells in ischemic models, and, last, the current evidence for the clinical usefulness of CD34(+) cells in the treatment of human ischemic disease.


Subject(s)
Angiogenic Proteins/metabolism , Antigens, CD34/metabolism , Cardiovascular Diseases/surgery , Stem Cell Transplantation , Stem Cells/metabolism , Animals , Biomarkers/metabolism , Cardiovascular Diseases/metabolism , Cardiovascular Diseases/physiopathology , Clinical Trials as Topic , Evidence-Based Medicine , Humans , Neovascularization, Physiologic , Regeneration , Treatment Outcome
12.
Mol Pharmacol ; 79(1): 10-23, 2011 Jan.
Article in English | MEDLINE | ID: mdl-20876743

ABSTRACT

KCNQ4 and KCNQ5 potassium channel subunits are expressed in vascular smooth muscle cells, although it remains uncertain how these subunits assemble to form functional channels. Using patch-clamp techniques, we compared the electrophysiological characteristics and effects of diclofenac, a known KCNQ channel activator, on human KCNQ4 and KCNQ5 channels expressed individually or together in A7r5 rat aortic smooth muscle cells. The conductance curves of the overexpressed channels were fitted by a single Boltzmann function in each case (V(0.5) values: -31, -44, and -38 mV for KCNQ4, KCNQ5, and KCNQ4/5, respectively). Diclofenac (100 µM) inhibited KCNQ5 channels, reducing maximum conductance by 53%, but increased maximum conductance of KCNQ4 channels by 38%. The opposite effects of diclofenac on KCNQ4 and KCNQ5 could not be attributed to the presence of a basic residue (lysine) in the voltage-sensing domain of KCNQ5, because mutation of this residue to neutral glycine (the residue present in KCNQ4) resulted in a more effective block of the channel. Differences in deactivation rates and distinct voltage-dependent effects of diclofenac on channel activation and deactivation observed with each of the subunit combinations (KCNQ4, KCNQ5, and KCNQ4/5) were used as diagnostic tools to evaluate native KCNQ currents in vascular smooth muscle cells. A7r5 cells express only KCNQ5 channels endogenously, and their responses to diclofenac closely resembled those of the overexpressed KCNQ5 currents. In contrast, mesenteric artery myocytes, which express both KCNQ4 and KCNQ5 channels, displayed whole-cell KCNQ currents with properties and diclofenac responses characteristic of overexpressed heteromeric KCNQ4/5 channels.


Subject(s)
Diclofenac/pharmacology , KCNQ Potassium Channels/agonists , KCNQ Potassium Channels/antagonists & inhibitors , KCNQ Potassium Channels/chemistry , Action Potentials/drug effects , Action Potentials/physiology , Animals , Cells, Cultured , Humans , KCNQ Potassium Channels/biosynthesis , Male , Muscle, Smooth, Vascular/cytology , Muscle, Smooth, Vascular/drug effects , Muscle, Smooth, Vascular/physiology , Patch-Clamp Techniques , Protein Subunits/agonists , Protein Subunits/antagonists & inhibitors , Protein Subunits/chemistry , Rats , Rats, Sprague-Dawley
13.
Mol Cell Pharmacol ; 2(1): 15-19, 2010.
Article in English | MEDLINE | ID: mdl-20689646

ABSTRACT

Non-steroidal anti-inflammatory drugs (NSAIDs) are commonly used medications for the treatment of both acute and chronic pain. Selective cyclooxygenase-2 (COX-2) inhibitors, such as celecoxib (Celebrex(®)), rofecoxib (Vioxx(®)), and diclofenac, have been among the most widely prescribed NSAIDs because they prevent the generation of prostaglandins involved in inflammation and pain, but avoid some of the gastrointestinal complications associated with less selective COX-1/COX-2 inhibitors. In 2004, rofecoxib (Vioxx(®)) was voluntarily withdrawn from the market because of adverse cardiovascular side effects. This led to an explosion of research into the cardiovascular effects of the 'coxibs', which revealed differential cardiovascular risk profiles among the members of this drug class. The differential risk profiles may relate to the tendency of some of the drugs to elevate blood pressure (BP). An important component of BP regulation is dependent on the contractile state of vascular smooth muscle cells (VSMCs), which is controlled to a large extent by the activities of KCNQ (Kv7 family) potassium channels and L-type calcium channels. Our recently published data indicate that celecoxib, but not rofecoxib or diclofenac, at therapeutically relevant concentrations, acts as a Kv7 potassium channel activator and a calcium channel blocker, causing relaxation of VSMCs and decreasing vascular tone. These vasorelaxant ion channel effects may account for the differential cardiovascular risk profiles among the different COX-2 inhibitors. We further speculate that these properties may be exploited for therapeutic benefit in the treatment of cardiovascular diseases or other medical conditions.

14.
Mol Pharmacol ; 76(5): 1053-61, 2009 Nov.
Article in English | MEDLINE | ID: mdl-19605525

ABSTRACT

Celecoxib, rofecoxib, and diclofenac are clinically used cyclooxygenase-2 (COX-2) inhibitors, which have been under intense scrutiny because long-term rofecoxib (Vioxx; Merck, Whitehouse Station, NJ) treatment was found to increase the risk of adverse cardiovascular events. A differential risk profile for these drugs has emerged, but the underlying mechanisms have not been fully elucidated. We investigated the effects of celecoxib, rofecoxib, and diclofenac on ionic currents and calcium signaling in vascular smooth muscle cells (VSMCs) using patch-clamp techniques and fura-2 fluorescence and on arterial constriction using pressure myography. Celecoxib, but not rofecoxib or diclofenac, dramatically enhanced KCNQ (K(v)7) potassium currents and suppressed L-type voltage-sensitive calcium currents in A7r5 rat aortic smooth muscle cells (native KCNQ currents or overexpressed human KCNQ5 currents) and freshly isolated rat mesenteric artery myocytes. The effects of celecoxib were concentration-dependent within the therapeutic concentration range, and were reversed on washout. Celecoxib, but not rofecoxib, also inhibited calcium responses to vasopressin in A7r5 cells and dilated intact or endothelium-denuded rat mesenteric arteries. A celecoxib analog, 2,5-dimethyl-celecoxib, which does not inhibit COX-2, mimicked celecoxib in its enhancement of vascular KCNQ5 currents, suppression of L-type calcium currents, and vasodilation. We conclude that celecoxib inhibits calcium responses in VSMCs by enhancing KCNQ5 currents and suppressing L-type calcium currents, which ultimately reduces vascular tone. These effects are independent of its COX-2 inhibitory actions and may explain the differential risk of cardiovascular events in patients taking different drugs of this class.


Subject(s)
Cardiovascular Agents/pharmacology , Cyclooxygenase 2 Inhibitors/pharmacology , Ion Channels/physiology , Muscle, Smooth, Vascular/drug effects , Animals , Calcium Signaling/drug effects , Calcium Signaling/physiology , Cardiovascular Agents/adverse effects , Cardiovascular Diseases/chemically induced , Cardiovascular Diseases/drug therapy , Cardiovascular Diseases/physiopathology , Cells, Cultured , Cyclooxygenase 2 Inhibitors/adverse effects , Humans , Ion Channels/agonists , Ion Channels/antagonists & inhibitors , Male , Muscle, Smooth, Vascular/physiology , Rats , Rats, Sprague-Dawley , Risk Factors , Vascular Resistance/drug effects , Vascular Resistance/physiology
15.
Mol Pharmacol ; 74(5): 1171-9, 2008 Nov.
Article in English | MEDLINE | ID: mdl-18684841

ABSTRACT

Potassium channels play an important role in electrical signaling of excitable cells such as neurons, cardiac myocytes, and vascular smooth muscle cells (VSMCs). In particular, the KCNQ (Kv7) family of voltage-activated K(+) channels functions to stabilize negative resting membrane potentials and thereby opposes electrical excitability. Of the five known members of the mammalian Kv7 family, Kv7.1 was originally recognized for its role in cardiac myocytes, where it contributes to repolarization of the cardiac action potential. Kv7.2 to Kv7.5 were first discovered in neurons, in which they play a well characterized role in neurotransmitter-stimulated action potential firing. Over the past 5 years, important new roles for Kv7 channels have been identified. Kv7 channels have been found to be expressed in VSMCs from several vascular beds where they contribute to the regulation of vascular tone. There is evidence that Kv7.5 channels in VSMCs are targeted by the hormone vasopressin to mediate its physiological vasoconstrictor actions and evidence that neuronal Kv7 channels in the baroreceptors of the aortic arch adjust the sensitivity of the mechanosensitive neurons to changes in arterial blood pressure. These newly identified physiological roles for Kv7 channels in the cardiovascular system warrant increased attention because pharmacological modulators of this family of channels are being used clinically to treat a variety of neurological disorders. This raises questions about the cardiovascular side effects associated with existing therapies, but there is also obvious potential to capitalize on the established and evolving pharmacology of these channels to develop new therapies for cardiovascular diseases.


Subject(s)
Cardiovascular System/metabolism , KCNQ1 Potassium Channel/physiology , Action Potentials/drug effects , Humans , KCNQ1 Potassium Channel/drug effects , KCNQ1 Potassium Channel/metabolism
16.
J Pharmacol Exp Ther ; 325(2): 475-83, 2008 May.
Article in English | MEDLINE | ID: mdl-18272810

ABSTRACT

Pressor effects of the vasoconstrictor hormone arginine vasopressin (AVP), observed when systemic AVP concentrations are less than 100 pM, are important for the physiological maintenance of blood pressure, and they are also the basis for therapeutic use of vasopressin to restore blood pressure in hypotensive patients. However, the mechanisms by which circulating AVP induces arterial constriction are unclear. We examined the novel hypothesis that KCNQ potassium channels mediate the physiological vasoconstrictor actions of AVP. Reverse transcriptase polymerase chain reaction revealed expression of KCNQ1, KCNQ4, and KCNQ5 in rat mesenteric artery smooth muscle cells (MASMCs). Whole-cell perforated patch recordings of voltage-sensitive K+ (Kv) currents in freshly isolated MASMCs revealed 1,3-dihydro-1-phenyl-3,3-bis(4-pyridinylmethyl)-2H-indol-2-one (linopirdine)- and 10,10-bis(4-pyridinylmethyl)-9(10H)-anthracenone (XE-991)-sensitive KCNQ currents that were electrophysiologically and pharmacologically distinct from other Kv currents. Suppression of KCNQ currents by AVP (100 pM) was associated with significant membrane depolarization, and it was abolished by the protein kinase C (PKC) inhibitor calphostin C (250 nM). The KCNQ channel blocker linopirdine (10 microM) inhibited KCNQ currents in MASMCs, and it induced constriction of isolated rat mesenteric arteries. The vasoconstrictor responses were not additive when combined with 30 pM AVP, and they were prevented by the L-type Ca2+ channel blocker verapamil. Ethyl-N-[2-amino-6-(4-fluorophenylmethylamino)pyridin-3-yl] carbamic acid (flupirtine) significantly enhanced KCNQ currents, and it reversed constrictor responses to 30 pM AVP. In vivo, i.v. administration of linopirdine induced a dose-dependent increase in mesenteric artery resistance and blood pressure, whereas flupirtine had the opposite effects. We conclude that physiological concentrations of AVP induce mesenteric artery constriction via PKC-dependent suppression of KCNQ currents and L-type Ca2+ channel activation in MASMCs.


Subject(s)
KCNQ Potassium Channels/physiology , Mesenteric Arteries/drug effects , Muscle Cells/drug effects , Protein Kinase C/physiology , Vasoconstrictor Agents/pharmacology , Vasopressins/pharmacology , Aminopyridines/pharmacology , Animals , Blood Pressure/drug effects , Calcium Channels, L-Type/physiology , Heart Rate/drug effects , Indoles/pharmacology , KCNQ Potassium Channels/agonists , KCNQ Potassium Channels/antagonists & inhibitors , Male , Mesenteric Arteries/cytology , Mesenteric Arteries/physiology , Muscle Cells/physiology , Potassium Channel Blockers/pharmacology , Pyridines/pharmacology , Rats , Rats, Sprague-Dawley , Vascular Resistance/drug effects
17.
Neuropsychopharmacology ; 31(6): 1212-26, 2006 Jun.
Article in English | MEDLINE | ID: mdl-16123760

ABSTRACT

Activation of mu-opioid receptors in the ventral pallidum (VP) is important for the induction of behavioral sensitization to morphine in rats. The present study was designed to ascertain if neurons within the VP demonstrate sensitization at a time when morphine-induced behavioral sensitization occurred (ie 3 or 14 days after five once-daily injections of 10 mg/kg i.p. morphine) in rats. Western blotting was used to evaluate transcription factors altered by opiates, CREB and deltaFosB. CREB levels did not change in the VP, but there was a significant decrease in levels of its active, phosphorylated form (pCREB) at both 3- and 14-days withdrawal. DeltaFosB levels were elevated following a 3-day withdrawal, but returned to normal by 14 days. This profile also was obtained from nucleus accumbens tissue. In a separate group of similarly treated rats, in vivo electrophysiological recordings of VP neuronal responses to microiontophoretically applied ligands were carried out after 14-days withdrawal. The firing rate effects of local applications of morphine were diminished in rats withdrawn from i.p. morphine. Repeated i.p. morphine did not alter GABA-mediated suppression of firing, or the rate enhancing effects of the D1 dopamine receptor agonist SKF82958 or glutamate. However, VP neurons from rats withdrawn from repeated i.p. morphine showed a higher propensity to enter a state of depolarization inactivation to locally applied glutamate. Overall, these findings reveal that decreased pCREB in brain regions such as the VP accompanies persistent behavioral sensitization to morphine and that this biochemical alteration may influence the excitability of neurons in this brain region.


Subject(s)
Cyclic AMP Response Element-Binding Protein/metabolism , Globus Pallidus/drug effects , Morphine/adverse effects , Narcotics/adverse effects , Nucleus Accumbens/drug effects , Proto-Oncogene Proteins c-fos/metabolism , Action Potentials/drug effects , Action Potentials/physiology , Analysis of Variance , Animals , Behavior, Animal , Benzazepines/pharmacology , Blotting, Western/methods , Dopamine Agonists/pharmacology , Dose-Response Relationship, Drug , Globus Pallidus/cytology , Globus Pallidus/metabolism , Glutamic Acid/pharmacology , Male , Neurons/drug effects , Neurons/physiology , Nucleus Accumbens/cytology , Nucleus Accumbens/metabolism , Opioid-Related Disorders/etiology , Opioid-Related Disorders/metabolism , Opioid-Related Disorders/physiopathology , Rats , Rats, Sprague-Dawley , Time Factors , gamma-Aminobutyric Acid/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...