Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Brain ; 145(7): 2313-2331, 2022 07 29.
Article in English | MEDLINE | ID: mdl-35786744

ABSTRACT

Epilepsy is one of the most frequent neurological diseases, with focal epilepsy accounting for the largest number of cases. The genetic alterations involved in focal epilepsy are far from being fully elucidated. Here, we show that defective lipid signalling caused by heterozygous ultra-rare variants in PIK3C2B, encoding for the class II phosphatidylinositol 3-kinase PI3K-C2ß, underlie focal epilepsy in humans. We demonstrate that patients' variants act as loss-of-function alleles, leading to impaired synthesis of the rare signalling lipid phosphatidylinositol 3,4-bisphosphate, resulting in mTORC1 hyperactivation. In vivo, mutant Pik3c2b alleles caused dose-dependent neuronal hyperexcitability and increased seizure susceptibility, indicating haploinsufficiency as a key driver of disease. Moreover, acute mTORC1 inhibition in mutant mice prevented experimentally induced seizures, providing a potential therapeutic option for a selective group of patients with focal epilepsy. Our findings reveal an unexpected role for class II PI3K-mediated lipid signalling in regulating mTORC1-dependent neuronal excitability in mice and humans.


Subject(s)
Class II Phosphatidylinositol 3-Kinases , Epilepsies, Partial , Animals , Class II Phosphatidylinositol 3-Kinases/genetics , Epilepsies, Partial/genetics , Humans , Lipids , Mechanistic Target of Rapamycin Complex 1 , Mice , Mutation/genetics , Phosphatidylinositol 3-Kinases/genetics , Seizures
2.
Cell Stem Cell ; 13(4): 433-45, 2013 Oct 03.
Article in English | MEDLINE | ID: mdl-24094324

ABSTRACT

Sox2(+) adult mouse pituitary cells can self-renew and terminally differentiate in vitro, but their physiological role in vivo and possible contribution to oncogenesis remain largely unknown. Using genetic lineage tracing, we show here that the Sox2(+) cell compartment of both the embryonic and adult pituitary contains stem/progenitor cells that are able to differentiate into all hormone-producing lineages and contribute to organ homeostasis during postnatal life. In addition, we show that targeted expression of oncogenic ß-catenin in Sox2(+) cells gives rise to pituitary tumors, but, unexpectedly, the tumor mass is not derived from the Sox2(+) mutation-sustaining cells, suggesting a paracrine role of Sox2(+) cells in pituitary oncogenesis. Our data therefore provide in vivo evidence of a role for Sox2(+) stem/progenitor cells in long-term physiological maintenance of the adult pituitary, and highlight an unexpected non-cell-autonomous role for these cells in the induction of pituitary tumors.


Subject(s)
Homeostasis , Pituitary Gland/cytology , Pituitary Neoplasms/pathology , SOXB1 Transcription Factors/metabolism , Stem Cells/cytology , Stem Cells/metabolism , Animals , Cells, Cultured , Mice , Mice, Transgenic , Mutation , Pituitary Gland/metabolism , Pituitary Neoplasms/metabolism , SOXB1 Transcription Factors/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...