Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
Add more filters










Publication year range
1.
Alcohol ; 118: 9-16, 2024 Apr 04.
Article in English | MEDLINE | ID: mdl-38582261

ABSTRACT

On December 8th 2023, the annual Alcohol and Immunology Research Interest Group (AIRIG) meeting was held at the University of Colorado Anschutz Medical Campus in Aurora, Colorado. The 2023 meeting focused broadly on how acute and chronic alcohol exposure leads to immune dysregulation, and how this contributes to damage in multiple tissues and organs. These include impaired lung immunity, intestinal dysfunction, autoimmunity, the gut-Central Nervous System (CNS) axis, and end-organ damage. In addition, diverse areas of alcohol research covered multiple pathways behind alcohol-induced cellular dysfunction, including inflammasome activation, changes in miRNA expression, mitochondrial metabolism, gene regulation, and transcriptomics. Finally, the work presented at this meeting highlighted novel biomarkers and therapeutic interventions for patients suffering from alcohol-induced organ damage.

2.
J Clin Invest ; 134(3)2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38299591

ABSTRACT

Alcohol-associated liver disease (ALD) is a major cause of chronic liver disease worldwide, and comprises a spectrum of several different disorders, including simple steatosis, steatohepatitis, cirrhosis, and superimposed hepatocellular carcinoma. Although tremendous progress has been made in the field of ALD over the last 20 years, the pathogenesis of ALD remains obscure, and there are currently no FDA-approved drugs for the treatment of ALD. In this Review, we discuss new insights into the pathogenesis and therapeutic targets of ALD, utilizing the study of multiomics and other cutting-edge approaches. The potential translation of these studies into clinical practice and therapy is deliberated. We also discuss preclinical models of ALD, interplay of ALD and metabolic dysfunction, alcohol-associated liver cancer, the heterogeneity of ALD, and some potential translational research prospects for ALD.


Subject(s)
Carcinoma, Hepatocellular , Fatty Liver , Liver Diseases, Alcoholic , Liver Neoplasms , Humans , Liver Diseases, Alcoholic/drug therapy , Liver Diseases, Alcoholic/etiology , Liver Diseases, Alcoholic/pathology , Ethanol , Fatty Liver/metabolism , Liver Cirrhosis/pathology , Carcinoma, Hepatocellular/etiology , Carcinoma, Hepatocellular/metabolism , Liver Neoplasms/etiology , Liver Neoplasms/metabolism , Liver/metabolism
3.
Alcohol Alcohol ; 59(1)2024 Jan 11.
Article in English | MEDLINE | ID: mdl-37950904

ABSTRACT

Ethanol metabolism plays an essential role in how the body perceives and experiences alcohol consumption, and evidence suggests that modulation of ethanol metabolism can alter the risk for alcohol use disorder (AUD). In this review, we explore how ethanol metabolism, mainly via alcohol dehydrogenase and aldehyde dehydrogenase 2 (ALDH2), contributes to drinking behaviors by integrating preclinical and clinical findings. We discuss how alcohol dehydrogenase and ALDH2 polymorphisms change the risk for AUD, and whether we can harness that knowledge to design interventions for AUD that alter ethanol metabolism. We detail the use of disulfiram, RNAi strategies, and kudzu/isoflavones to inhibit ALDH2 and increase acetaldehyde, ideally leading to decreases in drinking behavior. In addition, we cover recent preclinical evidence suggesting that strategies other than increasing acetaldehyde-mediated aversion can decrease ethanol consumption, providing other potential metabolism-centric therapeutic targets. However, modulating ethanol metabolism has inherent risks, and we point out some of the key areas in which more data are needed to mitigate these potential adverse effects. Finally, we present our opinions on the future of treating AUD by the modulation of ethanol metabolism.


Subject(s)
Alcoholism , Humans , Alcoholism/drug therapy , Alcoholism/metabolism , Ethanol/adverse effects , Aldehyde Dehydrogenase, Mitochondrial/genetics , Aldehyde Dehydrogenase/metabolism , Alcohol Dehydrogenase , Alcohol Drinking/adverse effects , Acetaldehyde/metabolism
5.
Gut ; 72(10): 1942-1958, 2023 10.
Article in English | MEDLINE | ID: mdl-36593103

ABSTRACT

OBJECTIVE: The current treatment for hepatocellular carcinoma (HCC) to block angiogenesis and immunosuppression provides some benefits only for a subset of patients with HCC, thus optimised therapeutic regimens are unmet needs, which require a thorough understanding of the underlying mechanisms by which tumour cells orchestrate an inflamed tumour microenvironment with significant myeloid cell infiltration. MicroRNA-223 (miR-223) is highly expressed in myeloid cells but its role in regulating tumour microenvironment remains unknown. DESIGN: Wild-type and miR-223 knockout mice were subjected to two mouse models of inflammation-associated HCC induced by injection of diethylnitrosamine (DEN) or orthotopic HCC cell implantation in chronic carbon tetrachloride (CCl4)-treated mice. RESULTS: Genetic deletion of miR-223 markedly exacerbated tumourigenesis in inflammation-associated HCC. Compared with wild-type mice, miR-223 knockout mice had more infiltrated programmed cell death 1 (PD-1+) T cells and programmed cell death ligand 1 (PD-L1+) macrophages after DEN+CCl4 administration. Bioinformatic analyses of RNA sequencing data revealed a strong correlation between miR-223 levels and tumour hypoxia, a condition that is well-documented to regulate PD-1/PD-L1. In vivo and in vitro mechanistic studies demonstrated that miR-223 did not directly target PD-1 and PD-L1 in immune cells rather than indirectly downregulated them by modulating tumour microenvironment via the suppression of hypoxia-inducible factor 1α-driven CD39/CD73-adenosine pathway in HCC. Moreover, gene delivery of miR-223 via adenovirus inhibited angiogenesis and hypoxia-mediated PD-1/PD-L1 activation in both HCC models, thereby hindering HCC progression. CONCLUSION: The miR-223 plays a critical role in modulating hypoxia-induced tumour immunosuppression and angiogenesis, which may serve as a novel therapeutic target for HCC.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , MicroRNAs , Mice , Animals , Carcinoma, Hepatocellular/pathology , Liver Neoplasms/pathology , B7-H1 Antigen , Programmed Cell Death 1 Receptor , Immunosuppression Therapy , Carcinogenesis , Mice, Knockout , MicroRNAs/genetics , Inflammation , Hypoxia , Tumor Microenvironment
6.
Cell Mol Gastroenterol Hepatol ; 15(2): 281-306, 2023.
Article in English | MEDLINE | ID: mdl-36243320

ABSTRACT

BACKGROUND & AIMS: Binge drinking in patients with metabolic syndrome accelerates the development of alcohol-associated liver disease. However, the underlying mechanisms remain elusive. We investigated if oxidative and nonoxidative alcohol metabolism pathways, diet-induced obesity, and adipose tissues influenced the development of acute liver injury in a single ethanol binge model. METHODS: A single ethanol binge was administered to chow-fed or high-fat diet (HFD)-fed wild-type and genetically modified mice. RESULTS: Oral administration of a single dose of ethanol induced acute liver injury and hepatic endoplasmic reticulum (ER) stress in chow- or HFD-fed mice. Disruption of the Adh1 gene increased blood ethanol concentration and exacerbated acute ethanol-induced ER stress and liver injury in both chow-fed and HFD-fed mice, while disruption of the Aldh2 gene did not affect such hepatic injury despite high blood acetaldehyde levels. Mechanistic studies showed that alcohol, not acetaldehyde, promoted hepatic ER stress, fatty acid synthesis, and increased adipocyte death and lipolysis, contributing to acute liver injury. Increased serum fatty acid ethyl esters (FAEEs), which are formed by an enzyme-mediated esterification of ethanol with fatty acids, were detected in mice after ethanol gavage, with higher levels in Adh1 knockout mice than in wild-type mice. Deletion of the Ces1d gene in mice markedly reduced the acute ethanol-induced increase of blood FAEE levels with a slight but significant reduction of serum aminotransferase levels. CONCLUSIONS: Ethanol and its nonoxidative metabolites, FAEEs, not acetaldehyde, promoted acute alcohol-induced liver injury by inducing ER stress, adipocyte death, and lipolysis.


Subject(s)
Chemical and Drug Induced Liver Injury , Endoplasmic Reticulum Stress , Ethanol , Lipolysis , Animals , Mice , Acetaldehyde/metabolism , Adipocytes/metabolism , Esters/metabolism , Ethanol/toxicity , Fatty Acids/metabolism , Liver/metabolism
7.
Alcohol Clin Exp Res ; 46(12): 2163-2176, 2022 12.
Article in English | MEDLINE | ID: mdl-36224745

ABSTRACT

BACKGROUND: The chronic-plus-binge model of ethanol consumption, where chronically (8-week) ethanol-fed mice are gavaged a single dose of ethanol (E8G1), is known to induce steatohepatitis in mice. However, how chronically ethanol-fed mice respond to multiple binges of ethanol remains unknown. METHODS: We extended the E8G1 model to three gavages of ethanol (E8G3) spaced 24 h apart, sacrificed each group 9 h after the final gavage, analyzed liver injury, and examined gene expression changes using microarray analyses in each group to identify mechanisms contributing to liver responses to binge ethanol. RESULTS: Surprisingly, E8G3 treatment induced lower levels of liver injury, steatosis, inflammation, and fibrosis as compared to mice after E8G1 treatment. Microarray analyses identified several pathways that may contribute to the reduced liver injury after E8G3 treatment compared to E8G1 treatment. The gene encoding cytochrome P450 2B10 (Cyp2b10) was one of the top upregulated genes in the E8G1 group and was further upregulated in the E8G3 group, but only moderately induced after chronic ethanol consumption, as confirmed by RT-qPCR and western blot analyses. Genetic disruption of Cyp2b10 worsened liver injury in E8G1 and E8G3 mice with higher blood ethanol levels compared to wild-type control mice, while in vitro experiments revealed that CYP2b10 did not directly promote ethanol metabolism. Metabolomic analyses revealed significant differences in hepatic metabolites from E8G1-treated Cyp2b10 knockout and WT mice, and these metabolic alterations may contribute to the reduced liver injury in Cyp2b10 knockout mice. CONCLUSION: Hepatic Cyp2b10 expression is highly induced after ethanol binge, and such upregulation reduces acute-on-chronic ethanol-induced liver injury via the indirect modification of ethanol metabolism.


Subject(s)
Chemical and Drug Induced Liver Injury, Chronic , Fatty Liver , Animals , Mice , Chemical and Drug Induced Liver Injury, Chronic/genetics , Chemical and Drug Induced Liver Injury, Chronic/metabolism , Ethanol/pharmacology , Fatty Liver/metabolism , Liver/metabolism , Mice, Inbred C57BL , Mice, Knockout
8.
J Clin Invest ; 132(14)2022 07 15.
Article in English | MEDLINE | ID: mdl-35838051

ABSTRACT

Intrahepatic neutrophil infiltration has been implicated in severe alcoholic hepatitis (SAH) pathogenesis; however, the mechanism underlying neutrophil-induced injury in SAH remains obscure. This translational study aims to describe the patterns of intrahepatic neutrophil infiltration and its involvement in SAH pathogenesis. Immunohistochemistry analyses of explanted livers identified two SAH phenotypes despite a similar clinical presentation, one with high intrahepatic neutrophils (Neuhi), but low levels of CD8+ T cells, and vice versa. RNA-Seq analyses demonstrated that neutrophil cytosolic factor 1 (NCF1), a key factor in controlling neutrophilic ROS production, was upregulated and correlated with hepatic inflammation and disease progression. To study specifically the mechanisms related to Neuhi in AH patients and liver injury, we used the mouse model of chronic-plus-binge ethanol feeding and found that myeloid-specific deletion of the Ncf1 gene abolished ethanol-induced hepatic inflammation and steatosis. RNA-Seq analysis and the data from experimental models revealed that neutrophilic NCF1-dependent ROS promoted alcoholic hepatitis (AH) by inhibiting AMP-activated protein kinase (a key regulator of lipid metabolism) and microRNA-223 (a key antiinflammatory and antifibrotic microRNA). In conclusion, two distinct histopathological phenotypes based on liver immune phenotyping are observed in SAH patients, suggesting a separate mechanism driving liver injury and/or failure in these patients.


Subject(s)
Hepatitis, Alcoholic , Liver Diseases, Alcoholic , Animals , Ethanol/adverse effects , Hepatitis, Alcoholic/genetics , Hepatitis, Alcoholic/metabolism , Inflammation/pathology , Liver/metabolism , Liver Diseases, Alcoholic/genetics , Liver Diseases, Alcoholic/metabolism , Mice , Mice, Inbred C57BL , Phenotype , Reactive Oxygen Species/metabolism
9.
Int J Biol Sci ; 18(11): 4341-4356, 2022.
Article in English | MEDLINE | ID: mdl-35864952

ABSTRACT

Background and aims: Vasoactive intestinal polypeptide type-I receptor (VIPR1) overexpression has been reported in numerous types of malignancies and utilized to develop novel target therapeutics and radiolabeled VIP analogue-based tumor imaging technology, but its role in liver carcinogenesis has not been explored. In the current study, we investigated the role of the VIP/VIPR1 signaling in controlling hepatocellular carcinoma (HCC) progression. Approach and results: By analyzing clinical samples, we found the expression level of VIPR1 was downregulated in human HCC tissues, which was correlated with advanced clinical stages, tumor growth, recurrence, and poor outcomes of HCC clinically. In vitro and in vivo studies revealed that activation of VIPR1 by VIP markedly inhibited HCC growth and metastasis. Intriguingly, transcriptome sequencing analyses revealed that activation of VIPR1 by VIP regulated arginine biosynthesis. Mechanistical studies in cultured HCC cells demonstrated that VIP treatment partially restored the expression of arginine anabolic key enzyme argininosuccinate synthase (ASS1), and to some extent, inhibited de novo pyrimidine synthetic pathway by downregulating the activation of CAD (carbamoyl-phosphate synthetase 2, aspartate transcarbamylase, and dihydroorotase). VIP treatment upregulated ASS1 and subsequently suppressed CAD phosphorylation in an mTOR/p70S6K signaling dependent manner. Clinically, we found human HCC samples were associated with downregulation of ASS1 but upregulation of CAD phosphorylation, and that VIPR1 levels positively correlated with ASS1 levels and serum levels of urea, the end product of the urea cycle and arginine metabolism in HCC. Conclusions: Loss of VIPR1 expression in HCC facilitates CAD phosphorylation and tumor progression, and restoration of VIPR1 and treatment with the VIPR1 agonist may be a promising approach for HCC treatment.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Arginine/therapeutic use , Argininosuccinate Synthase/metabolism , Carcinoma, Hepatocellular/metabolism , Cell Line, Tumor , Humans , Liver Neoplasms/metabolism , Pyrimidines/therapeutic use , Receptors, Vasoactive Intestinal Polypeptide, Type I , Urea/therapeutic use
11.
Cell Mol Gastroenterol Hepatol ; 13(1): 151-171, 2022.
Article in English | MEDLINE | ID: mdl-34390865

ABSTRACT

BACKGROUND & AIMS: Nonalcoholic steatohepatitis (NASH) is a leading cause of chronic liver disease, characterized by steatosis and hallmark liver neutrophil infiltration. NASH also is associated with adipose tissue inflammation, but the role of adipose tissue inflammation in NASH pathogenesis remains obscure. The aim of this study was to investigate the interplay between neutrophil recruitment in adipose tissue and the progression of NASH. METHODS: A mouse model of NASH was obtained by high-fat diet (HFD) feeding plus adenovirus-Cxcl1 overexpression (HFD+AdCxcl1). Genetic deletion of E-selectin (Sele) and treatment with an S100A9 inhibitor (Paquinimod) were investigated using this model. RESULTS: By analyzing transcriptomic data sets of adipose tissue from NASH patients, we found that E-selectin, a key adhesion molecule for neutrophils, is the highest up-regulated gene among neutrophil recruitment-related factors in adipose tissue of NASH patients compared with those in patients with simple steatosis. A marked up-regulation of Sele in adipose tissue also was observed in HFD+AdCxcl1 mice. The HFD+AdCxcl1-induced NASH phenotype was ameliorated in Sele knockout mice and was accompanied by reduced lipolysis and inflammation in adipose tissue, which resulted in decreased serum free fatty acids and proinflammatory adipokines. S100A8/A9, a major proinflammatory protein secreted by neutrophils, was highly increased in adipose tissue of HFD+AdCxcl1 mice. This increase was blunted in the Sele knockout mice. Therapeutically, treatment with the S100A9 inhibitor Paquinimod reduced lipolysis, inflammation, and adipokine production, ameliorating the NASH phenotype in mice. CONCLUSIONS: E-selectin plays an important role in inducing neutrophil recruitment in adipose tissue, which subsequently promotes inflammation and lipolysis via the production of S100A8/A9, thereby exacerbating the steatosis-to-NASH progression. Targeting adipose tissue inflammation therefore may represent a potential novel therapy for treatment of NASH.


Subject(s)
Non-alcoholic Fatty Liver Disease , Adipose Tissue/metabolism , Animals , E-Selectin/metabolism , Humans , Inflammation/pathology , Lipolysis , Mice , Mice, Inbred C57BL , Non-alcoholic Fatty Liver Disease/pathology
12.
J Hepatol ; 75(1): 163-176, 2021 07.
Article in English | MEDLINE | ID: mdl-33610678

ABSTRACT

BACKGROUND & AIMS: Interleukin (IL)-20 and IL-22 belong to the IL-10 family. IL-10 is a well-documented anti-inflammatory cytokine while IL-22 is well known for epithelial protection and its antibacterial function, showing great therapeutic potential for organ damage; however, the function of IL-20 remains largely unknown. METHODS: Il20 knockout (Il20-/-) mice and wild-type littermates were generated and injected with Concanavalin A (ConA) and Klebsiella pneumoniae (K.P.) to induce acute hepatitis and bacterial infection, respectively. RESULTS: Il20-/- mice were resistant to acute hepatitis and exhibited selectively elevated levels of the hepatoprotective cytokine IL-6. Such selective inhibition of IL-6 by IL-20 was due to IL-20 targeting hepatocytes that produce high levels of IL-6 but a limited number of other cytokines. Mechanistically, IL-20 upregulated NAD(P)H: quinone oxidoreductase 1 (NQO1) expression and subsequently promoted the protein degradation of transcription factor IκBζ, resulting in selective downregulation of the IκBζ-dependent gene Il6 as well several other IκBζ-dependent genes including lipocalin-2 (Lcn2). Given the important role of IL-6 and LCN2 in limiting bacterial infection, we examined the effect of IL-20 on bacterial infection and found Il20-/- mice were resistant to K.P. infection and exhibited elevated levels of hepatic IκBζ-dependent antibacterial genes. Moreover, IL-20 upregulated hepatic NQO1 by binding to IL-22R1/IL-20R2 and activating ERK/p38MAPK/NRF2 signaling pathways. Finally, the levels of hepatic IL1B, IL20, and IκBζ target genes were elevated, and correlated with each other, in patients with severe alcoholic hepatitis. CONCLUSIONS: IL-20 selectively inhibits hepatic IL-6 production rather than exerting IL-10-like broad anti-inflammatory properties. Unlike IL-22, IL-20 aggravates acute hepatitis and bacterial infection. Thus, anti-IL-20 therapy could be a promising option to control acute hepatitis and bacterial infection. LAY SUMMARY: Several interleukin (IL)-20 family cytokines have been shown to play important roles in controllimg inflammatory responses, infection and tissue damage, but the role of IL-20 remains unclear. Herein, we elucidated the role of IL-20 in liver disease and bacterial infection. We show that IL-20 can aggravate hepatitis and bacterial infection; thus, targeting IL-20 holds promise for the treatment of patients with liver disease.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Bacterial Infections , Hepatitis, Alcoholic , Hepatitis , Interleukin-1beta/metabolism , Interleukins/metabolism , Animals , Bacterial Infections/drug therapy , Bacterial Infections/immunology , Bacterial Infections/metabolism , Drug Discovery , Gene Expression Regulation/drug effects , Hepatitis/drug therapy , Hepatitis/immunology , Hepatitis/metabolism , Hepatitis, Alcoholic/immunology , Hepatitis, Alcoholic/metabolism , Humans , Liver/metabolism , Mice , Mice, Knockout , NAD(P)H Dehydrogenase (Quinone)/metabolism , Proteolysis , Up-Regulation
13.
Gut ; 70(4): 784-795, 2021 04.
Article in English | MEDLINE | ID: mdl-33127832

ABSTRACT

MicroRNAs (miRNAs) are small, non-coding RNAs that post-transcriptionally regulate gene expression by binding to specific mRNA targets and promoting their degradation and/or translational inhibition. miRNAs regulate both physiological and pathological liver functions. Altered expression of miRNAs is associated with liver metabolism dysregulation, liver injury, liver fibrosis and tumour development, making miRNAs attractive therapeutic strategies for the diagnosis and treatment of liver diseases. Here, we review recent advances regarding the regulation and function of miRNAs in liver diseases with a major focus on miRNAs that are specifically expressed or enriched in hepatocytes (miR-122, miR-194/192), neutrophils (miR-223), hepatic stellate cells (miR-29), immune cells (miR-155) and in circulation (miR-21). The functions and target genes of these miRNAs are emphasised in alcohol-associated liver disease, non-alcoholic fatty liver disease, drug-induced liver injury, viral hepatitis and hepatocellular carcinoma, as well liver fibrosis and liver failure. We touch on the roles of miRNAs in intercellular communication between hepatocytes and other types of cells via extracellular vesicles in the pathogenesis of liver diseases. We provide perspective on the application of miRNAs as biomarkers for early diagnosis, prognosis and assessment of liver diseases and discuss the challenges in miRNA-based therapy for liver diseases. Further investigation of miRNAs in the liver will help us better understand the pathogeneses of liver diseases and may identify biomarkers and therapeutic targets for liver diseases in the future.


Subject(s)
Liver Diseases/genetics , MicroRNAs/physiology , Biomarkers/metabolism , Cell Communication/physiology , Early Diagnosis , Gene Expression Regulation/physiology , Hepatocytes/metabolism , Humans , Prognosis
14.
J Pharmacol Exp Ther ; 376(1): 84-97, 2021 01.
Article in English | MEDLINE | ID: mdl-33109619

ABSTRACT

Constitutively active extracellular signal-regulated kinase (ERK) 1/2 signaling promotes cancer cell proliferation and survival. We previously described a class of compounds containing a 1,1-dioxido-2,5-dihydrothiophen-3-yl 4-benzenesulfonate scaffold that targeted ERK2 substrate docking sites and selectively inhibited ERK1/2-dependent functions, including activator protein-1-mediated transcription and growth of cancer cells containing active ERK1/2 due to mutations in Ras G-proteins or BRAF, Proto-oncogene B-RAF (Rapidly Acclerated Fibrosarcoma) kinase. The current study identified chemical features required for biologic activity and global effects on gene and protein levels in A375 melanoma cells containing mutant BRAF (V600E). Saturation transfer difference-NMR and mass spectrometry analyses revealed interactions between a lead compound (SF-3-030) and ERK2, including the formation of a covalent adduct on cysteine 252 that is located near the docking site for ERK/FXF (DEF) motif for substrate recruitment. Cells treated with SF-3-030 showed rapid changes in immediate early gene levels, including DEF motif-containing ERK1/2 substrates in the Fos family. Analysis of transcriptome and proteome changes showed that the SF-3-030 effects overlapped with ATP-competitive or catalytic site inhibitors of MAPK/ERK Kinase 1/2 (MEK1/2) or ERK1/2. Like other ERK1/2 pathway inhibitors, SF-3-030 induced reactive oxygen species (ROS) and genes associated with oxidative stress, including nuclear factor erythroid 2-related factor 2 (NRF2). Whereas the addition of the ROS inhibitor N-acetyl cysteine reversed SF-3-030-induced ROS and inhibition of A375 cell proliferation, the addition of NRF2 inhibitors has little effect on cell proliferation. These studies provide mechanistic information on a novel chemical scaffold that selectively regulates ERK1/2-targeted transcription factors and inhibits the proliferation of A375 melanoma cells through a ROS-dependent mechanism. SIGNIFICANCE STATEMENT: Constitutive activation of the extracellular signal-regulated kinase (ERK1/2) pathway drives the proliferation and survival of many cancer cell types. Given the diversity of cellular functions regulated by ERK1/2, the current studies have examined the mechanism of a novel chemical scaffold that targets ERK2 near a substrate binding site and inhibits select ERK functions. Using transcriptomic and proteomic analyses, we provide a mechanistic basis for how this class of compounds inhibits melanoma cells containing mutated BRAF and active ERK1/2.


Subject(s)
Antineoplastic Agents/chemistry , MAP Kinase Signaling System/drug effects , Melanoma/metabolism , Mitogen-Activated Protein Kinase 1/metabolism , Oxidative Stress , Antineoplastic Agents/pharmacology , Catalytic Domain , Cell Proliferation/drug effects , HeLa Cells , Humans , Jurkat Cells , Mitogen-Activated Protein Kinase 1/chemistry , Protein Binding , Proto-Oncogene Mas , Proto-Oncogene Proteins B-raf/genetics
15.
Cells ; 9(11)2020 11 21.
Article in English | MEDLINE | ID: mdl-33233444

ABSTRACT

Non-Hodgkin's lymphoma (NHL) is a malignant cancer originating in the lymphatic system with a 25-30% mortality rate. CHOP, consisting of cyclophosphamide (CPA), doxorubicin, vincristine, and prednisone, is a first-generation chemotherapy extensively used to treat NHL. However, poor survival rates among patients in advanced stages of NHL shows a need to improve this standard of care treatment. CPA, an integral component of CHOP, is a prodrug that requires CYP2B6-mediated bioactivation to 4-hydroxy-CPA (4-OH-CPA). The expression of CYP2B6 is transcriptionally regulated by the constitutive androstane receptor (CAR, NRi13). We have previously demonstrated that the induction of hepatic CYP2B6 by CITCO, a selective human CAR (hCAR) agonist, results in CHOP's enhanced antineoplastic effects in vitro. Here, we investigate the in vivo potential of CITCO as an adjuvant of CPA-based NHL treatment in a hCAR-transgenic mouse line. Our results demonstrate that the addition of CITCO to the CHOP regimen leads to significant suppression of the growth of EL-4 xenografts in hCAR-transgenic mice accompanied by reduced expression of cyclin-D1, ki67, Pcna, and increased caspase 3 fragmentation in tumor tissues. CITCO robustly induced the expression of cyp2b10 (murine ortholog of CYP2B6) through hCAR activation and increased plasma concentrations of 4-OH-CPA. Comparing to intraperitoneal injection, oral gavage of CITCO results in optimal hepatic cyp2b10 induction. Our in vivo studies have collectively uncovered CITCO as an effective facilitator for CPA-based NHL treatment with a pharmacokinetic profile favoring oral administration, promoting CITCO as a promising adjuvant candidate for CPA-based regimens.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Chemotherapy, Adjuvant/methods , Chromatography, Liquid/methods , Lymphoma/drug therapy , Mass Spectrometry/methods , Animals , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Cyclophosphamide/pharmacology , Cyclophosphamide/therapeutic use , Doxorubicin/pharmacology , Doxorubicin/therapeutic use , Humans , Mice , Mice, Transgenic , Prednisone/pharmacology , Prednisone/therapeutic use , Vincristine/pharmacology , Vincristine/therapeutic use
16.
Food Chem Toxicol ; 136: 111070, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31870920

ABSTRACT

While liver injury is commonly associated with excessive alcohol consumption, how liver injury affects alcohol metabolism and drinking preference remains unclear. To answer these questions, we measured the expression and activity of alcohol dehydrogenase 1 (ADH1) and acetaldehyde dehydrogenase 2 (ALDH2) enzymes, ethanol and acetaldehyde levels in vivo, and binge-like and preferential drinking behaviors with drinking in the dark and two-bottle choice in animal models with liver injury. Acute and chronic carbon tetrachloride (CCl4), and acute LPS-induced liver injury repressed hepatic ALDH2 activity and expression and consequently, blood and liver acetaldehyde concentrations were increased in these models. In addition, chronic CCl4 and acute LPS treatment inhibited hepatic ADH1 expression and activity, leading to increases in blood and liver ethanol concentrations. Consistent with the increase in acetaldehyde levels, alcohol drinking behaviors were reduced in mice with acute or chronic liver injury. Furthermore, oxidative stress induced by hydrogen peroxide attenuated ADH1 and ALDH2 activity post-transcriptionally, while proinflammatory cytokines led to transcriptional repression of ADH1 and ALDH2 in cultured hepatocytes, which correlated with the repression of transcription factor HNF4α. Collectively, our data suggest that alcohol metabolism is suppressed by inflammation and oxidative stress, which is correlated with decreased drinking behavior.


Subject(s)
Alcohol Drinking/adverse effects , Ethanol/adverse effects , Liver Diseases/immunology , Liver/injuries , Aldehyde Dehydrogenase/genetics , Aldehyde Dehydrogenase/immunology , Aldehyde Dehydrogenase, Mitochondrial/genetics , Aldehyde Dehydrogenase, Mitochondrial/immunology , Animals , Ethanol/metabolism , Hepatocyte Nuclear Factor 6/genetics , Hepatocyte Nuclear Factor 6/immunology , Humans , Liver/immunology , Liver Diseases/etiology , Liver Diseases/genetics , Male , Mice , Mice, Inbred C57BL
17.
Mol Pharmacol ; 96(3): 345-354, 2019 09.
Article in English | MEDLINE | ID: mdl-31436536

ABSTRACT

Phenobarbital (PB), a broadly used antiseizure drug, was the first to be characterized as an inducer of cytochrome P450 by activation of the constitutive androstane receptor (CAR). Although PB is recognized as a conserved CAR activator among species via a well-documented indirect activation mechanism, conflicting results have been reported regarding PB regulation of the pregnane X receptor (PXR), a sister receptor of CAR, and the underlying mechanisms remain elusive. Here, we show that in a human CAR (hCAR)-knockout (KO) HepaRG cell line, PB significantly induces the expression of CYP2B6 and CYP3A4, two shared target genes of hCAR and human PXR (hPXR). In human primary hepatocytes and hCAR-KO HepaRG cells, PB-induced expression of CYP3A4 was markedly repressed by genetic knockdown or pharmacological inhibition of hPXR. Mechanistically, PB concentration dependently activates hPXR but not its mouse counterpart in cell-based luciferase assays. Mammalian two-hybrid assays demonstrated that PB selectively increases the functional interaction between the steroid receptor coactivator-1 and hPXR but not mouse PXR. Moreover, surface plasmon resonance binding affinity assay showed that PB directly binds to the ligand binding domain of hPXR (KD = 1.42 × 10-05). Structure-activity analysis further revealed that the amino acid tryptophan-299 within the ligand binding pocket of hPXR plays a key role in the agonistic binding of PB and mutation of tryptophan-299 disrupts PB activation of hPXR. Collectively, these data reveal that PB, a selective mouse CAR activator, activates both hCAR and hPXR, and provide novel mechanistic insights for PB-mediated activation of hPXR.


Subject(s)
Phenobarbital/pharmacology , Pregnane X Receptor/chemistry , Pregnane X Receptor/genetics , Receptors, Cytoplasmic and Nuclear/genetics , Animals , Cells, Cultured , Constitutive Androstane Receptor , Cytochrome P-450 CYP2B6/metabolism , Cytochrome P-450 CYP3A/metabolism , Gene Knockout Techniques , Humans , Mice , Pregnane X Receptor/metabolism , Protein Binding , Receptors, Cytoplasmic and Nuclear/metabolism , Species Specificity , Surface Plasmon Resonance , Tryptophan/metabolism
18.
Biochem Pharmacol ; 168: 224-236, 2019 10.
Article in English | MEDLINE | ID: mdl-31306645

ABSTRACT

The constitutive androstane receptor (CAR) plays an important role in hepatic drug metabolism and detoxification but has recently been projected as a potential drug target for metabolic disorders due to its repression of lipogenesis and gluconeogenesis. Thus, identification of physiologically-relevant CAR modulators has garnered significant interest. Here, we adapted the previously characterized human CAR (hCAR) nuclear translocation assay in human primary hepatocytes (HPH) to a high-content format and screened an FDA-approved drug library containing 978 compounds. Comparison of hCAR nuclear translocation results with the Tox21 hCAR luciferase reporter assay database in 643 shared compounds revealed significant overlap between these two assays, with approximately half of hCAR agonists also mediating nuclear translocation. Further validation of these compounds in HPH and/or using published data from literature demonstrated that hCAR translocation exhibits a higher correlation with the induction of hCAR target genes, such as CYP2B6, than the luciferase assay. In addition, some CAR antagonists which repress CYP2B6 mRNA expression in HPH, such as sorafenib, rimonabant, and CINPA1, were found to translocate hCAR to the nucleus of HPH. Notably, both the translocation assay and the luciferase assay identified mosapride citrate (MOS), a gastroprokinetic agent that is known to reduce fasting blood glucose levels in humans, as a novel hCAR activator. Further studies with MOS in HPH uncovered that MOS can repress the expression of gluconeogenic genes and decrease glucose output from hepatocytes, providing a previously unidentified liver-specific mechanism by which MOS modulates blood glucose levels.


Subject(s)
Benzamides/pharmacology , Gluconeogenesis/drug effects , Hepatocytes/drug effects , Hepatocytes/metabolism , Morpholines/pharmacology , Receptors, Cytoplasmic and Nuclear/agonists , Receptors, Cytoplasmic and Nuclear/metabolism , Constitutive Androstane Receptor , Gluconeogenesis/physiology , Humans
19.
Eur J Med Chem ; 179: 84-99, 2019 Oct 01.
Article in English | MEDLINE | ID: mdl-31247375

ABSTRACT

The DNA alkylating prodrug cyclophosphamide (CPA), alone or in combination with other agents, is one of the most commonly used anti-cancer agents. As a prodrug, CPA is activated by cytochrome P450 2B6 (CYP2B6), which is transcriptionally regulated by the human constitutive androstane receptor (hCAR). Therefore, hCAR agonists represent novel sensitizers for CPA-based therapies. Among known hCAR agonists, compound 6-(4-chlorophenyl)imidazo-[2,1-b]thiazole-5-carbaldehyde-O-(3,4-dichlorobenzyl)oxime (CITCO) is the most potent and broadly utilized in biological studies. Through structural modification of CITCO, we have developed a novel compound DL5016 (32), which has an EC50 value of 0.66 µM and EMAX value of 4.9 when activating hCAR. DL5016 robustly induced the expression of hCAR target gene CYP2B6, at both the mRNA and protein levels, and caused translocation of hCAR from the cytoplasm to the nucleus in human primary hepatocytes. The effects of DL5016 were highlighted by dramatically enhancing the efficacy of CPA-based cytotoxicity to non-Hodgkin lymphoma cells.


Subject(s)
Antineoplastic Agents/pharmacology , Cyclophosphamide/pharmacology , Lymphoma, Non-Hodgkin/drug therapy , Prodrugs/pharmacology , Receptors, Cytoplasmic and Nuclear/agonists , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Proliferation/drug effects , Cell Survival/drug effects , Constitutive Androstane Receptor , Cyclophosphamide/chemical synthesis , Cyclophosphamide/chemistry , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Hep G2 Cells , Humans , Lymphoma, Non-Hodgkin/metabolism , Lymphoma, Non-Hodgkin/pathology , Molecular Structure , Prodrugs/chemical synthesis , Prodrugs/chemistry , Receptors, Cytoplasmic and Nuclear/metabolism , Structure-Activity Relationship , Tumor Cells, Cultured
20.
Methods Mol Biol ; 1966: 71-77, 2019.
Article in English | MEDLINE | ID: mdl-31041739

ABSTRACT

The constitutive androstane receptor (CAR; NR1I3) is a xenobiotic receptor that upregulates metabolism and detoxification mechanisms in the liver in response to chemical stimulation. Drug-induced activation of CAR may result in clinically significant drug-drug interactions and lead to complicated therapeutic outcomes. Accumulating evidence has also suggested that CAR may be a potential drug target for metabolic disorders and liver cancer by modulating cell cycle progression, energy homeostasis, and cell proliferation. Therefore, identification of CAR activators is of potential importance in both drug development and clinical practice. Notably, while CAR is localized in the nucleus and constitutively activated in immortalized cell lines, it is sequestered in the cytoplasm and translocates to the nucleus upon chemical-provoked activation in primary cultured hepatocytes. Here, we have developed a methodology that takes advantage of nuclear translocation being the first and essential step of CAR activation in human primary hepatocytes to perform high-content screening of human CAR modulators by adapting the EYFP-hCAR translocation assay to a 96-well format with automated sample dispensing and fluorescence imaging analysis.


Subject(s)
Cell Nucleus/metabolism , Hepatocytes/metabolism , High-Throughput Screening Assays/methods , Receptors, Cytoplasmic and Nuclear/metabolism , Active Transport, Cell Nucleus , Cells, Cultured , Constitutive Androstane Receptor , Humans , Microscopy/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...