Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Cancers (Basel) ; 15(3)2023 Jan 20.
Article in English | MEDLINE | ID: mdl-36765607

ABSTRACT

T-cell lymphoblastic lymphoma (T-LBL) is a rare and aggressive lymphatic cancer, often diagnosed at a young age. Patients are treated with intensive chemotherapy, potentially followed by a hematopoietic stem cell transplantation. Although prognosis of T-LBL has improved with intensified treatment protocols, they are associated with side effects and 10-20% of patients still die from relapsed or refractory disease. Given this, the search toward less toxic anti-lymphoma therapies is ongoing. Here, we targeted the recently described DNA hypermethylated profile in T-LBL with the DNA hypomethylating agent decitabine. We evaluated the anti-lymphoma properties and downstream effects of decitabine, using patient derived xenograft (PDX) models. Decitabine treatment resulted in prolonged lymphoma-free survival in all T-LBL PDX models, which was associated with downregulation of the oncogenic MYC pathway. However, some PDX models showed more benefit of decitabine treatment compared to others. In more sensitive models, differentially methylated CpG regions resulted in more differentially expressed genes in open chromatin regions. This resulted in stronger downregulation of cell cycle genes and upregulation of immune response activating transcripts. Finally, we suggest a gene signature for high decitabine sensitivity in T-LBL. Altogether, we here delivered pre-clinical proof of the potential use of decitabine as a new therapeutic agent in T-LBL.

2.
Int J Mol Sci ; 23(17)2022 Sep 04.
Article in English | MEDLINE | ID: mdl-36077521

ABSTRACT

We aimed to identify miRNAs and pathways specifically deregulated in adolescent and young adult (AYA) T-ALL patients. Small RNA-seq showed no major differences between AYA and pediatric T-ALL, but it revealed downregulation of miR-143-3p in T-ALL patients. Prediction algorithms identified several known and putative oncogenes targeted by this miRNA, including KRAS, FGF1, and FGF9. Pathway analysis indicated signaling pathways related to cell growth and proliferation, including FGFR signaling and PI3K-AKT signaling, with the majority of genes overrepresented in these pathways being predicted targets of hsa-miR-143-3p. By luciferase reporter assays, we validated direct interactions of this miRNA with KRAS, FGF1 and FGF9. In cell proliferation assays, we showed reduction of cell growth upon miR-143-3p overexpression in two T-ALL cell lines. Our study is the first description of the miRNA transcriptome in AYA T-ALL patients and the first report on tumor suppressor potential of miR-143-3p in T-ALL. Downregulation of this miRNA in T-ALL patients might contribute to enhanced growth and viability of leukemic cells. We also discuss the potential role of miR-143-3p in FGFR signaling. Although this requires more extensive validation, it might be an interesting direction, since FGFR inhibition proved promising in preclinical studies in various cancers.


Subject(s)
MicroRNAs , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma , Adolescent , Child , Fibroblast Growth Factor 1/metabolism , Gene Expression Regulation, Neoplastic , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/genetics , Proto-Oncogene Proteins p21(ras)/genetics , RNA-Seq , Transcriptome , Young Adult
3.
Genes Chromosomes Cancer ; 61(12): 720-733, 2022 12.
Article in English | MEDLINE | ID: mdl-35778917

ABSTRACT

T-cell acute lymphoblastic leukemia (T-ALL) is a heterogeneous and aggressive malignancy arising from T-cell precursors. MiRNAs are implicated in negative regulation of gene expression and when aberrantly expressed contribute to various cancer types, including T-ALL. Previously we demonstrated the oncogenic potential of miR-363-3p overexpression in a subgroup of T-ALL patients. Here, using combined proteomic and transcriptomic approaches, we show that miR-363-3p enhances cell growth of T-ALL in vitro via inhibition of PTPRC and SOCS2, which are implicated in repression of the JAK-STAT pathway. We propose that overexpression of miR-363-3p is a novel mechanism potentially contributing to overactivation of JAK-STAT pathway. Additionally, by combining the transcriptomic and methylation data of T-ALL patients, we show that promoter methylation may also contribute to downregulation of SOCS2 expression and thus potentially to JAK-STAT activation. In conclusion, we highlight aberrant miRNA expression and aberrant promoter methylation as mechanisms, alternative to mutations of JAK-STAT-related genes, which might lead to the upregulation of JAK-dependent signaling in T-ALL.


Subject(s)
MicroRNAs , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma , Cell Line, Tumor , Child , Humans , Janus Kinases/genetics , Leukocyte Common Antigens/metabolism , Methylation , MicroRNAs/genetics , MicroRNAs/metabolism , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/genetics , Proteomics , STAT Transcription Factors/genetics , STAT Transcription Factors/metabolism , Signal Transduction , Suppressor of Cytokine Signaling Proteins/genetics , Suppressor of Cytokine Signaling Proteins/metabolism
4.
Sci Rep ; 12(1): 6297, 2022 04 15.
Article in English | MEDLINE | ID: mdl-35428787

ABSTRACT

miRNAs form a class of noncoding RNAs, involved in post-transcriptional regulation of gene expression, broadly studied for their involvement in physiological and pathological context. Inhibition of mature miRNA transcripts, commonly used in miRNA loss-of-function experiments, may not be specific in case of miRNAs with high sequence homology, e.g. miRNAs from the same seed family. Phenotypic effects of miRNA repression might be biased by the repression of highly similar miRNAs. Another challenge is simultaneous inhibition of multiple miRNAs encoded within policistronic clusters, potentially co-regulating common biological processes. To elucidate roles of miRNA clusters and miRNAs with high sequence homology, it is of key importance to selectively repress only the miRNAs of interest. Targeting miRNAs on genomic level with CRISPR/dCas9-based methods is an attractive alternative to blocking mature miRNAs. Yet, so far no clear guidelines on the design of CRISPR inhibition (CRISPRi) experiments, specifically for miRNA repression, have been proposed. To address this need, here we propose a strategy for effective inhibition of miRNAs and miRNA clusters using CRISPRi. We provide clues on how to approach the challenges in using CRISPR/dCas in miRNA studies, which include prediction of miRNA transcription start sites (TSSs) and the design of single guide RNAs (sgRNAs). The strategy implements three TSS prediction online tools, dedicated specifically for miRNAs: miRStart, FANTOM 5 miRNA atlas, DIANA-miRGen, and CRISPOR tool for sgRNAs design; it includes testing and selection of optimal sgRNAs. We demonstrate that compared to siRNA/shRNA-based miRNA silencing, CRISPRi improves the repression specificity for miRNAs with highly similar sequence and contribute to higher uniformity of the effects of silencing the whole miRNA clusters. This strategy may be adapted for CRISPR-mediated activation (CRISPRa) of miRNA expression.


Subject(s)
Clustered Regularly Interspaced Short Palindromic Repeats , MicroRNAs , Clustered Regularly Interspaced Short Palindromic Repeats/genetics , MicroRNAs/genetics , MicroRNAs/metabolism , RNA, Guide, Kinetoplastida/genetics , RNA, Guide, Kinetoplastida/metabolism , Sequence Homology , Transcription Initiation Site
SELECTION OF CITATIONS
SEARCH DETAIL
...