Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 12(1): 1464, 2022 01 27.
Article in English | MEDLINE | ID: mdl-35087132

ABSTRACT

Glioblastoma (GBM) is the most common primary brain tumor with a median survival under two years. Using in silico and in vitro techniques, we demonstrate heterogeneous expression of CD97, a leukocyte adhesion marker, in human GBM. Beyond its previous demonstrated role in tumor invasion, we show that CD97 is also associated with upregulation of the mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/Erk) and phosphatidylinositol 3-kinase/protein kinase B (PI3K/Akt) pathways in GBM. While CD97 knockout decreased Akt activation, CD97 targeting did not alter MAPK/Erk activation, did not slow GBM cell proliferation in culture, and increased levels of glycolytic and oxidative phosphorylation metabolites. Treatment with a soluble CD97 inhibitor did not alter activation of the MAPK/Erk and PI3K/Akt pathways. Tumors with high CD97 expression were associated with immune microenvironment changes including increased naïve macrophages, regulatory T cells, and resting natural killer (NK) cells. These data suggest that, while CD97 expression is associated with conflicting effects on tumor cell proliferative and metabolic pathways that overall do not affect tumor cell proliferation, CD97 exerts pro-tumoral effects on the tumor immune microenvironment, which along with the pro-invasive effects of CD97 we previously demonstrated, provides impetus to continue exploring CD97 as a therapeutic target in GBM.


Subject(s)
Antigens, CD/metabolism , Brain Neoplasms/immunology , Glioblastoma/immunology , Receptors, G-Protein-Coupled/metabolism , Tumor Microenvironment/immunology , Activation, Metabolic/immunology , Antigens, CD/genetics , Brain Neoplasms/genetics , Brain Neoplasms/pathology , Cell Line, Tumor , Cell Proliferation/drug effects , Gene Expression Regulation, Neoplastic/immunology , Gene Knockdown Techniques , Gene Knockout Techniques , Glioblastoma/genetics , Glioblastoma/pathology , Humans , MAP Kinase Signaling System/drug effects , MAP Kinase Signaling System/immunology , Metabolomics , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Receptors, G-Protein-Coupled/antagonists & inhibitors , Receptors, G-Protein-Coupled/genetics , Tumor Microenvironment/drug effects , Tumor Microenvironment/genetics
2.
Front Immunol ; 11: 583305, 2020.
Article in English | MEDLINE | ID: mdl-33193396

ABSTRACT

Novel therapeutics against the global threat of multidrug-resistant Neisseria gonorrhoeae are urgently needed. Gonococci possess several mechanisms to evade killing by human complement, including binding of factor H (FH), a key inhibitor of the alternative pathway. FH comprises 20 short consensus repeat (SCR) domains organized in a head-to-tail manner as a single chain. N. gonorrhoeae binds two regions in FH; domains 6 and 7 and domains 18 through 20. We designed a novel anti-infective immunotherapeutic molecule that fuses domains 18-20 of FH containing a D-to-G mutation in domain 19 at position 1119 (called FH*) with human IgG1 Fc. FH*/Fc retained binding to gonococci but did not lyse human erythrocytes. Expression of FH*/Fc in tobacco plants was undertaken as an alternative, economical production platform. FH*/Fc was expressed in high yields in tobacco plants (300-600 mg/kg biomass). The activities of plant- and CHO-cell produced FH*/Fc against gonococci were similar in vitro and in the mouse vaginal colonization model of gonorrhea. The addition of flexible linkers [e.g., (GGGGS)2 or (GGGGS)3] between FH* and Fc improved the bactericidal efficacy of FH*/Fc 2.7-fold. The linkers also improved PMN-mediated opsonophagocytosis about 11-fold. FH*/Fc with linker also effectively reduced the duration and burden of colonization of two gonococcal strains tested in mice. FH*/Fc lost efficacy: i) in C6-/- mice (no terminal complement) and ii) when Fc was mutated to abrogate complement activation, suggesting that an intact complement was necessary for FH*/Fc function in vivo. In summary, plant-produced FH*/Fc represent promising prophylactic or adjunctive immunotherapeutics against multidrug-resistant gonococci.


Subject(s)
Drug Resistance, Multiple/immunology , Immunoglobulin Fc Fragments/immunology , Neisseria gonorrhoeae/immunology , Nicotiana/genetics , Plants, Genetically Modified , Animals , Anti-Bacterial Agents/pharmacology , Complement Factor H/genetics , Complement Factor H/immunology , Gonorrhea , Humans , Immunoglobulin G , Immunotherapy , Mice , Plants, Genetically Modified/genetics , Recombinant Fusion Proteins/immunology
3.
BMC Biotechnol ; 12: 14, 2012 Apr 26.
Article in English | MEDLINE | ID: mdl-22536810

ABSTRACT

BACKGROUND: During a global influenza pandemic, the vaccine requirements of developing countries can surpass their supply capabilities, if these exist at all, compelling them to rely on developed countries for stocks that may not be available in time. There is thus a need for developing countries in general to produce their own pandemic and possibly seasonal influenza vaccines. Here we describe the development of a plant-based platform for producing influenza vaccines locally, in South Africa. Plant-produced influenza vaccine candidates are quicker to develop and potentially cheaper than egg-produced influenza vaccines, and their production can be rapidly upscaled. In this study, we investigated the feasibility of producing a vaccine to the highly pathogenic avian influenza A subtype H5N1 virus, the most generally virulent influenza virus identified to date. Two variants of the haemagglutinin (HA) surface glycoprotein gene were synthesised for optimum expression in plants: these were the full-length HA gene (H5) and a truncated form lacking the transmembrane domain (H5tr). The genes were cloned into a panel of Agrobacterium tumefaciens binary plant expression vectors in order to test HA accumulation in different cell compartments. The constructs were transiently expressed in tobacco by means of agroinfiltration. Stable transgenic tobacco plants were also generated to provide seed for stable storage of the material as a pre-pandemic strategy. RESULTS: For both transient and transgenic expression systems the highest accumulation of full-length H5 protein occurred in the apoplastic spaces, while the highest accumulation of H5tr was in the endoplasmic reticulum. The H5 proteins were produced at relatively high concentrations in both systems. Following partial purification, haemagglutination and haemagglutination inhibition tests indicated that the conformation of the plant-produced HA variants was correct and the proteins were functional. The immunisation of chickens and mice with the candidate vaccines elicited HA-specific antibody responses. CONCLUSIONS: We managed, after synthesis of two versions of a single gene, to produce by transient and transgenic expression in plants, two variants of a highly pathogenic avian influenza virus HA protein which could have vaccine potential. This is a proof of principle of the potential of plant-produced influenza vaccines as a feasible pandemic response strategy for South Africa and other developing countries.


Subject(s)
Agrobacterium tumefaciens/metabolism , Hemagglutinin Glycoproteins, Influenza Virus/biosynthesis , Influenza Vaccines/biosynthesis , Protein Engineering/methods , Recombinant Proteins/biosynthesis , Agrobacterium tumefaciens/genetics , Animals , Antibodies, Viral/blood , Chickens , Hemagglutination Inhibition Tests , Hemagglutinin Glycoproteins, Influenza Virus/genetics , Hemagglutinin Glycoproteins, Influenza Virus/immunology , Influenza A Virus, H5N1 Subtype/immunology , Influenza Vaccines/genetics , Influenza Vaccines/immunology , Male , Mice , Mice, Inbred BALB C , Recombinant Proteins/genetics , Recombinant Proteins/immunology , South Africa
4.
Int J Mol Sci ; 12(8): 4975-90, 2011.
Article in English | MEDLINE | ID: mdl-21954339

ABSTRACT

Potential epidemics of infectious diseases and the constant threat of bioterrorism demand rapid, scalable, and cost-efficient manufacturing of therapeutic proteins. Molecular farming of tobacco plants provides an alternative for the recombinant production of therapeutics. We have developed a transient production platform that uses Agrobacterium infiltration of Nicotiana benthamiana plants to express a novel anthrax receptor decoy protein (immunoadhesin), CMG2-Fc. This chimeric fusion protein, designed to protect against the deadly anthrax toxins, is composed of the von Willebrand factor A (VWA) domain of human capillary morphogenesis 2 (CMG2), an effective anthrax toxin receptor, and the Fc region of human immunoglobulin G (IgG). We evaluated, in N. benthamiana intact plants and detached leaves, the expression of CMG2-Fc under the control of the constitutive CaMV 35S promoter, and the co-expression of CMG2-Fc with nine different viral suppressors of post-transcriptional gene silencing (PTGS): p1, p10, p19, p21, p24, p25, p38, 2b, and HCPro. Overall, transient CMG2-Fc expression was higher on intact plants than detached leaves. Maximum expression was observed with p1 co-expression at 3.5 days post-infiltration (DPI), with a level of 0.56 g CMG2-Fc per kg of leaf fresh weight and 1.5% of the total soluble protein, a ten-fold increase in expression when compared to absence of suppression. Co-expression with the p25 PTGS suppressor also significantly increased the CMG2-Fc expression level after just 3.5 DPI.


Subject(s)
Gene Expression , Nicotiana/genetics , Receptors, Peptide/genetics , Recombinant Fusion Proteins/genetics , Gene Silencing , Immunoglobulin Fc Fragments/genetics , Immunoglobulin Fc Fragments/metabolism , Plant Leaves/genetics , Plant Leaves/metabolism , Receptors, Peptide/metabolism , Recombinant Fusion Proteins/metabolism , Nicotiana/metabolism , Nicotiana/microbiology , von Willebrand Factor/genetics , von Willebrand Factor/metabolism
5.
Antimicrob Agents Chemother ; 55(1): 132-9, 2011 Jan.
Article in English | MEDLINE | ID: mdl-20956592

ABSTRACT

Inhalational anthrax, a zoonotic disease caused by the inhalation of Bacillus anthracis spores, has a ∼50% fatality rate even when treated with antibiotics. Pathogenesis is dependent on the activity of two toxic noncovalent complexes: edema toxin (EdTx) and lethal toxin (LeTx). Protective antigen (PA), an essential component of both complexes, binds with high affinity to the major receptor mediating the lethality of anthrax toxin in vivo, capillary morphogenesis protein 2 (CMG2). Certain antibodies against PA have been shown to protect against anthrax in vivo. As an alternative to anti-PA antibodies, we produced a fusion of the extracellular domain of human CMG2 and human IgG Fc, using both transient and stable tobacco plant expression systems. Optimized expression led to the CMG2-Fc fusion protein being produced at high levels: 730 mg/kg fresh leaf weight in Nicotiana benthamiana and 65 mg/kg in N. tabacum. CMG2-Fc, purified from tobacco plants, fully protected rabbits against a lethal challenge with B. anthracis spores at a dose of 2 mg/kg body weight administered at the time of challenge. Treatment with CMG2-Fc did not interfere with the development of the animals' own immunity to anthrax, as treated animals that survived an initial challenge also survived a rechallenge 30 days later. The glycosylation of the Fc (or lack thereof) had no significant effect on the protective potency of CMG2-Fc in rabbits or on its serum half-life, which was about 5 days. Significantly, CMG2-Fc effectively neutralized, in vitro, LeTx-containing mutant forms of PA that were not neutralized by anti-PA monoclonal antibodies.


Subject(s)
Anthrax/immunology , Immunoglobulin Fc Fragments/immunology , Immunoglobulin Fc Fragments/metabolism , Nicotiana/metabolism , Receptors, Peptide/immunology , Receptors, Peptide/metabolism , Recombinant Fusion Proteins/immunology , Recombinant Fusion Proteins/metabolism , Animals , Humans , Immunoglobulin Fc Fragments/genetics , Rabbits , Receptors, Peptide/genetics , Recombinant Fusion Proteins/genetics , Nicotiana/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...