Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Vaccine ; 41(48): 7192-7200, 2023 11 22.
Article in English | MEDLINE | ID: mdl-37903679

ABSTRACT

Both vector and mRNA vaccines were an important part of the response to the COVID-19 pandemic and may be required in future outbreaks and pandemics. The aim of this study was to validate whether immunogenicity differs for adenoviral vectored (AdV) versus mRNA vaccines against SARS-CoV-2, and to investigate how anti-vector immunity and B cell dynamics modulate immunogenicity. We enrolled SARS-CoV-2 infection-naïve health care workers who had received two doses of either AdV AZD1222 (n = 184) or mRNA BNT162b2 vaccine (n = 274) between April and October 2021. Blood was collected at least once, 10-48 days after vaccine dose 2 for antibody and B cell analyses. Median ages were 42 and 39 years, for AdV and mRNA vaccinees, respectively. Surrogate virus neutralization test (sVNT) and spike binding antibody titres were a median of 4.2 and 2.2 times lower, respectively, for AdV compared to mRNA vaccinees (p < 0.001). Median percentages of memory B cells that recognized fluorescent-tagged spike and RBD were 2.9 and 8.3 times lower, respectively for AdV compared to mRNA vaccinees. Titres of IgG reactive with human adenovirus type 5 hexon protein rose a median of 2.2-fold after AdV vaccination but were not correlated with anti-spike antibody titres. Together the results show that mRNA induced substantially more sVNT antibody than AdV vaccine, which reflected greater B cell expansion and targeting of the RBD rather than an attenuating effect of anti-vector antibodies. ClinicalTrials.gov Identifier: NCT05110911.


Subject(s)
COVID-19 , Viral Vaccines , Humans , COVID-19 Vaccines , Pandemics/prevention & control , BNT162 Vaccine , ChAdOx1 nCoV-19 , COVID-19/prevention & control , SARS-CoV-2 , Antibodies , Antibodies, Viral
2.
medRxiv ; 2023 Jun 05.
Article in English | MEDLINE | ID: mdl-37333329

ABSTRACT

Both vector and mRNA vaccines were an important part of the response to the COVID-19 pandemic and may be required in future outbreaks and pandemics. However, adenoviral vectored (AdV) vaccines may be less immunogenic than mRNA vaccines against SARS-CoV-2. We assessed anti-spike and anti-vector immunity among infection-naïve Health Care Workers (HCW) following two doses of AdV (AZD1222) versus mRNA (BNT162b2) vaccine. 183 AdV and 274 mRNA vaccinees enrolled between April and October 2021. Median ages were 42 and 39 years, respectively. Blood was collected at least once, 10-48 days after vaccine dose 2. Surrogate virus neutralization test (sVNT) and spike binding antibody titres were a median of 4.2 and 2.2 times lower, respectively, for AdV compared to mRNA vaccinees (p<0.001). Median percentages of memory B cells that recognized fluorescent-tagged spike and RBD were 2.9 and 8.3 times lower, respectively for AdV compared to mRNA vaccinees. Titres of IgG reactive with human Adenovirus type 5 hexon protein rose a median of 2.2-fold after AdV vaccination but were not correlated with anti-spike antibody titres. Together the results show that mRNA induced substantially more sVNT antibody than AdV vaccine due to greater B cell expansion and targeting of the RBD. Pre-existing AdV vector cross-reactive antibodies were boosted following AdV vaccination but had no detectable effect on immunogenicity.

3.
Parasit Vectors ; 8: 368, 2015 Jul 14.
Article in English | MEDLINE | ID: mdl-26168790

ABSTRACT

BACKGROUND: The cat flea (Ctenocephalides felis) is a blood-feeding ectoparasitic insect and particular nuisance pest of companion animals worldwide. Identification of genes that are differentially expressed in response to feeding is important for understanding flea biology and discovering targets for their control. METHODS: C. felis fleas were maintained and fed for 24 h using an artificial rearing system. The technique of suppression subtractive hybridization was employed to screen for mRNAs specifically expressed in fed fleas. RESULTS: We characterized nine distinct full-length flea transcripts that exhibited modulated or de novo expression during feeding. Among the predicted protein sequences were two serine proteases, a serine protease inhibitor, two mucin-like molecules, a DNA topoisomerase, an enzyme associated with GPI-mediated cell membrane attachment of proteins and a component of the insect innate immune response. CONCLUSIONS: Our results provide a molecular insight into the physiology of flea feeding. The protein products of the genes identified may play important roles during flea feeding in terms of blood meal digestion, cellular growth/repair and protection from feeding-associated stresses.


Subject(s)
Cat Diseases/parasitology , Ctenocephalides/genetics , Flea Infestations/veterinary , Insect Proteins/genetics , Amino Acid Sequence , Animals , Cat Diseases/blood , Cats , Ctenocephalides/chemistry , Ctenocephalides/physiology , Feeding Behavior , Flea Infestations/blood , Flea Infestations/parasitology , Insect Proteins/chemistry , Insect Proteins/metabolism , Molecular Sequence Data , Sequence Alignment
SELECTION OF CITATIONS
SEARCH DETAIL
...