Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-29605490

ABSTRACT

Animals respond to diurnal shifts in their environment with a combination of behavioral, physiological, and molecular changes to synchronize with regularly-timed external cues. Reproduction, movement, and metabolism in cnidarians have all been shown to be regulated by diurnal lighting, but the molecular mechanisms that may be responsible for these phenotypes remain largely unknown. The starlet sea anemone, Nematostella vectensis, has oscillating patterns of locomotion and respiration, as well as the molecular components of a putative circadian clock that may provide a mechanism for these light-induced responses. Here, we compare transcriptomic responses of N. vectensis when cultured under a diurnal lighting condition (12 h light: 12 h dark) with sea anemones cultured under constant darkness for 20 days. More than 3,000 genes (~13% of transcripts) had significant differences in expression between light and dark, with most genes having higher expression in the photoperiod. Following removal of the light cue 678 genes lost differential expression, suggesting that light-entrained gene expression by the circadian clock has temporal limits. Grouping of genes differentially expressed in light:dark conditions showed that cell cycle and transcription maintained diel expression in the absence of light, while many of the genes related to metabolism, antioxidants, immunity, and signal transduction lost differential expression without a light cue. Our data highlight the importance of diel light cycles on circadian mechanisms in this species, prompting new hypotheses for the role of photoreception in major biological processes, e.g., metabolism, immunity.


Subject(s)
Circadian Rhythm/genetics , Darkness , Gene Expression Profiling , Light , Models, Biological , Sea Anemones/genetics , Transcriptome , Animals , Antioxidants/metabolism , Circadian Clocks/genetics , Databases, Genetic , Gene Ontology , Immunity, Innate/genetics , Oligonucleotide Array Sequence Analysis , Photoperiod , Signal Transduction/genetics , Transcription, Genetic/genetics
2.
J Fish Biol ; 74(5): 1037-48, 2009 Apr.
Article in English | MEDLINE | ID: mdl-20735617

ABSTRACT

The plains topminnow Fundulus sciadicus is a freshwater killifish endemic to the Great Plains of North America. Rising concerns for future viability of this species have prompted recent changes in its conservation status. In this study, the results of a range-wide population genetic survey based on the sequence of entire mitochondrial control region (CR) are presented. A total of 181 fish were collected from 11 sites in Nebraska and 10 sites in Missouri spanning the distribution range of the species. Seven polymorphic sites were found in the 966 base pairs of the CR, and only nine unique haplotypes were detected among all fish. Phylogenetic analysis and statistical parsimony networks identified two distinct clades. The first included fish in the Osage, Gasconade and Spring River drainages in Missouri, while the second included individuals from Nebraska and the Lamine River in Missouri, although the Lamine River is much closer to the other Missouri sites than to the Nebraska sites. Pair-wise F(ST) and average population distances indicated that populations from most drainages are genetically distinct, as 93% of the total molecular variance was attributed to among-drainage effects. Four sites within the main distributions of this species and a highly disjunct site from the south-western portion of the range are suggested as potential targets for conservation.


Subject(s)
DNA, Mitochondrial/genetics , Fundulidae/genetics , Genetic Variation , Genetics, Population , Animals , Haplotypes , Missouri , Nebraska , Phylogeny , Rivers , Sequence Alignment , Sequence Analysis, DNA
SELECTION OF CITATIONS
SEARCH DETAIL
...