Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Toxicol Pathol ; 49(2): 235-260, 2021 02.
Article in English | MEDLINE | ID: mdl-33455525

ABSTRACT

The inhalation route is a relatively novel drug delivery route for biotherapeutics and, as a result, there is a paucity of published data and experience within the toxicology/pathology community. In recent years, findings arising in toxicology studies with inhaled biologics have provoked concern and regulatory challenges due, in part, to the lack of understanding of the expected pathology, mechanisms, and adversity induced by this mode of delivery. In this manuscript, the authors describe 12 case studies, comprising 18 toxicology studies, using a range of inhaled biotherapeutics (monoclonal antibodies, fragment antigen-binding antibodies, domain antibodies, therapeutic proteins/peptides, and an oligonucleotide) in rodents, nonhuman primates (NHPs), and the rabbit in subacute (1 week) to chronic (26 weeks) toxicology studies. Analysis of the data revealed that many of these molecules were associated with a characteristic pattern of toxicity with high levels of immunogenicity. Microscopic changes in the airways consisted of a predominantly lymphoid perivascular/peribronchiolar (PV/PB) mononuclear inflammatory cell (MIC) infiltrate, whereas changes in the terminal airways/alveoli were characterized by simple ("uncomplicated") increases in macrophages or inflammatory cell infiltrates ranging from mixed inflammatory cell infiltration to inflammation. The PV/PB MIC changes were considered most likely secondary to immunogenicity, whereas simple increases in alveolar macrophages were most likely secondary to clearance mechanisms. Alveolar inflammatory cell infiltrates and inflammation were likely induced by immune modulation or stimulation through pharmacologic effects on target biology or type III hypersensitivity (immune complex disease). Finally, a group of experts provide introductory thoughts regarding the adversity of inhaled biotherapeutics and the basis for reasonable differences of opinion that might arise between toxicologists, pathologists, and regulators.


Subject(s)
Biological Products , Hypersensitivity , Administration, Inhalation , Animals , Biological Products/adverse effects , Bronchoalveolar Lavage Fluid , Inflammation , Lung , Macrophages, Alveolar , Rabbits
2.
Toxicol Pathol ; 49(1): 5-109, 2021 01.
Article in English | MEDLINE | ID: mdl-33393871

ABSTRACT

The INHAND (International Harmonization of Nomenclature and Diagnostic Criteria for Lesions) Project (www.toxpath.org/inhand.asp) is a joint initiative of the societies of toxicologic Pathology from Europe (ESTP), Great Britain (BSTP), Japan (JSTP), and North America (STP) to develop an internationally accepted nomenclature for proliferative and nonproliferative lesions in laboratory animals. The purpose of this publication is to provide a standardized nomenclature for classifying lesions observed in most tissues and organs from the dog used in nonclinical safety studies. Some of the lesions are illustrated by color photomicrographs. The standardized nomenclature presented in this document is also available electronically on the internet (http://www.goreni.org/). Sources of material included histopathology databases from government, academia, and industrial laboratories throughout the world. Content includes spontaneous lesions, lesions induced by exposure to test materials, and relevant infectious and parasitic lesions. A widely accepted and utilized international harmonization of nomenclature for lesions in laboratory animals will provide a common language among regulatory and scientific research organizations in different countries and increase and enrich international exchanges of information among toxicologists and pathologists.


Subject(s)
Animals, Laboratory , Animals , Databases, Factual , Dogs , Europe , Japan
3.
Toxicol Pathol ; 49(2): 370-377, 2021 02.
Article in English | MEDLINE | ID: mdl-32431232

ABSTRACT

Squamous metaplasia is a nonspecific adaptive response to chronic irritation in the larynx and is often diagnosed as a test item-related change in rat inhalation studies. Investigating scientists are frequently asked to assess the adversity of laryngeal squamous metaplasia and to interpret its relevance to human risk. One factor in predicting relevance to human risk is the kinetics (degree and speed) of recovery following the cessation of exposure to the test item. Most reports describing recovery from squamous metaplasia in the rat larynx discuss the more severe end of the spectrum of metaplastic change (moderate to severe) and include relatively long (6 weeks or more) recovery periods. We conducted 2 studies to evaluate the toxicity and recovery from any potential effects of 4-(Chloro-2-methylphenoxy) butyric (MCPB) acid, a herbicide, when administered by inhalation to young male Sprague Dawley rats for 3 to 4 weeks. The studies resulted in minimal to moderate laryngeal squamous metaplasia for which we describe the kinetics of recovery over 1 to 4 weeks. We found that the microscopic change epithelial alteration, which is normally considered to be a precursor in the development of squamous metaplasia, can occur as a transitional stage between squamous and normal epithelium during recovery.


Subject(s)
Carcinoma, Squamous Cell , Larynx , Animals , Kinetics , Male , Metaplasia , Rats , Rats, Sprague-Dawley
4.
Toxicol Pathol ; 39(5): 893-900, 2011 Aug.
Article in English | MEDLINE | ID: mdl-21628717

ABSTRACT

The rabbit is occasionally used for inhalation and intranasal safety assessment studies, but there are no detailed descriptions of the anatomy or histology of the rabbit nose. To address this deficit, the nasal cavities of thirty-two control adult rabbits were sectioned and examined to provide mapping of the main epithelial types and histological structures present within the cavity and turbinates. Four levels of the nasal cavity were prepared and examined using anatomic landmarks. Level I was sectioned immediately posterior to the incisors, Level II at the first palatal ridge, Level III immediately anterior to the first upper premolar teeth, and Level IV immediately anterior to the first upper molar. Level I was lined predominantly by squamous epithelium with small amounts of thick transitional epithelium, and examination is recommended only for studies involving test article administration via instillation. Level II was lined primarily with transitional and respiratory epithelia, whereas Levels III and IV were lined with respiratory and olfactory epithelia and often contained nasal-associated lymphoid tissue. The vomeronasal organs were evident only in Level II. The similarities and differences of these features are compared with those of other common laboratory species (rat, mouse, dog, and cynomolgus monkey) and man.


Subject(s)
Models, Animal , Nasal Cavity/anatomy & histology , Rabbits/anatomy & histology , Turbinates/anatomy & histology , Administration, Inhalation , Administration, Intranasal , Animals , Biomedical Research/standards , Dogs , Female , Histology, Comparative , Humans , Macaca fascicularis , Male , Mice , Olfactory Mucosa/anatomy & histology , Rats , Vomeronasal Organ/anatomy & histology
SELECTION OF CITATIONS
SEARCH DETAIL
...