Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Vet Res ; 5: 25, 2009 Jul 22.
Article in English | MEDLINE | ID: mdl-19624842

ABSTRACT

BACKGROUND: To study the ability of tepoxalin, a dual inhibitor of cyclooxygenase (COX) and lipoxygenase (LOX) and its active metabolite to reduce the catabolic response of cartilage to cytokine stimulation in an in vitro model of canine osteoarthritis (OA).Grossly normal cartilage was collected post-mortem from seven dogs that had no evidence of joint disease. Cartilage explants were cultured in media containing the recombinant canine interleukin-1beta (IL-1beta) at 100 ng/ml and recombinant human oncostatin-M (OSM) at 50 ng/ml. The effects of tepoxalin and its metabolite were studied at three concentrations (1 x 10(-5), 1 x 10(-6) and 1 x 10(-7) M). Total glycosaminoglycan (GAG) and collagen (hydroxyproline) release from cartilage explants were used as outcome measures of proteoglycan and collagen depletion respectively. PGE2 and LTB4 assays were performed to study the effects of the drug on COX and LOX activity. RESULTS: Treatment with IL-1beta and OSM significantly upregulated both collagen (p = 0.004) and proteoglycan (p = 0.001) release from the explants. Tepoxalin at 10(-5) M and 10(-6) M caused a decrease in collagen release from the explants (p = 0.047 and p = 0.075). Drug treatment showed no effect on GAG release. PGE2 concentration in culture media at day 7 was significantly increased by IL-1beta and OSM and treatment with both tepoxalin and its metabolite showed a trend towards dose-dependent reduction of PGE2 production. LTB4 concentrations were too low to be quantified. Cytotoxicity assays suggested that neither tepoxalin nor its metabolite had a toxic effect on the cartilage chondrocytes at the concentrations and used in this study. CONCLUSION: This study provides evidence that tepoxalin exerts inhibition of COX and can reduce in vitro collagen loss from canine cartilage explants at a concentration of 10(-5) M. We can conclude that, in this model, tepoxalin can partially inhibit the development of cartilage degeneration when it is available locally to the tissue.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Cartilage, Articular/drug effects , Dogs , Pyrazoles/pharmacology , Tissue Culture Techniques/veterinary , Animals , Collagen/metabolism , Cytokines/pharmacology , Proteoglycans/metabolism
2.
BMC Musculoskelet Disord ; 10: 27, 2009 Feb 26.
Article in English | MEDLINE | ID: mdl-19245707

ABSTRACT

BACKGROUND: There is a paucity of data regarding molecular markers that identify the phenotype of the tendon cell. This study aims to quantify gene expression markers that distinguish between tendon fibroblasts and other mesenchymal cells which may be used to investigate tenogenesis. METHODS: Expression levels for 12 genes representative of musculoskeletal tissues, including the proposed tendon progenitor marker scleraxis, relative to validated reference genes, were evaluated in matched samples of equine tendon (harvested from the superficial digital flexor tendon), cartilage and bone using quantitative PCR (qPCR). Expression levels of genes associated with tendon phenotype were then evaluated in healthy, including developmental, and diseased equine tendon tissue and in tendon fibroblasts maintained in both monolayer culture and in three dimensional (3D) collagen gels. RESULTS: Significantly increased expression of scleraxis was found in tendon compared with bone (P = 0.002) but not compared to cartilage. High levels of COL1A2 and scleraxis and low levels of tenascin-C were found to be most representative of adult tensional tendon phenotype. While, relative expression of scleraxis in developing mid-gestational tendon or in acute or chronically diseased tendon did not differ significantly from normal adult tendon, tenascin-C message was significantly upregulated in acutely injured equine tendon (P = 0.001). Relative scleraxis gene expression levels in tendon cell monolayer and 3D cultures were significantly lower than in normal adult tendon (P = 0.002, P = 0.02 respectively). CONCLUSION: The findings of this study indicate that high expression of both COL1A2 and scleraxis, and low expression of tenascin-C is representative of a tensional tendon phenotype. The in vitro culture methods used in these experiments however, may not recapitulate the phenotype of normal tensional tendon fibroblasts in tissues as evidenced by gene expression.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors/genetics , Cartilage, Articular/metabolism , Cell Culture Techniques/methods , Gene Expression , Metacarpal Bones/metabolism , Tendinopathy/metabolism , Tendons/metabolism , Animals , Basic Helix-Loop-Helix Transcription Factors/metabolism , Cartilage, Articular/pathology , Collagen/metabolism , Fibroblasts/metabolism , Fibroblasts/pathology , Gels , Genetic Markers , Horses , Metacarpal Bones/pathology , Tendinopathy/pathology , Tendons/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...