Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
Add more filters










Publication year range
1.
Curr Med Chem ; 2023 Nov 16.
Article in English | MEDLINE | ID: mdl-37990898

ABSTRACT

Cardiovascular disease (CDV) represents the major cause of death globally. Atherosclerosis, as the primary cause of CVD, is a chronic immune-inflammatory disorder with complex multifactorial pathophysiology encompassing oxidative stress, enhanced immune-inflammatory cascade, endothelial dysfunction, and thrombosis. An initiating event in atherosclerosis is the subendothelial accumulation of low-density lipoprotein (LDL), followed by the localization of macrophages to fatty deposits on blood vessel walls, forming lipid-laden macrophages (foam cells) that secrete compounds involved in plaque formation. Given the fact that foam cells are one of the key culprits that underlie the pathophysiology of atherosclerosis, special attention has been paid to the investigation of the efficient therapeutic approach to overcome the dysregulation of metabolism of cholesterol in macrophages, decrease the foam cell formation and/or to force its degradation. Proprotein convertase subtilisin/kexin type 9 (PCSK9) is a secretory serine proteinase that has emerged as a significant regulator of the lipid metabolism pathway. PCSK9 activation leads to the degradation of LDL receptors (LDLRs), increasing LDL cholesterol (LDL-C) levels in the circulation. PCSK9 pathway dysregulation has been identified as one of the mechanisms involved in atherosclerosis. In addition, microRNAs (miRNAs) are investigated as important epigenetic factors in the pathophysiology of atherosclerosis and dysregulation of lipid metabolism. This review article summarizes the recent findings connecting the role of PCSK9 in atherosclerosis and the involvement of various miRNAs in regulating the expression of PCSK9-related genes. We also discuss PCSK9 pathway-targeting therapeutic interventions based on PCSK9 inhibition, miRNA levels manipulation by therapeutic agents, and the most recent advances in PSCK9 gene editing using CRISPR/Cas9 platform, meganuclease, and base editors.

2.
Antivir Ther ; 28(5): 13596535231208831, 2023 10.
Article in English | MEDLINE | ID: mdl-37861754

ABSTRACT

Background: Subacute thyroiditis (SAT) is an organ-specific disease that various drugs, including COVID-19 vaccines, can trigger. COVID-19 infection has been associated with thyroid gland damage and disease SARS-CoV-2 direct action, euthyroid sick syndrome, and immune-mediated mechanisms are all potential mechanisms of thyroid damage. It denotes thyroid gland inflammation, most commonly of viral origin, and belongs to the transitory, self-limiting thyroid gland diseases group, causing complications in approximately 15% of patients in the form of permanent hypothyroidism. Some authors say SAT is the most common thyroid disease associated with COVID-19.Purpose: The occurrence of SAT many weeks after administering the second COVID-19 vaccine is rare and has limited documentation in academic literature. This study aims to present the occurrence of SAT after administering the COVID-19 vaccine. We present the case of a 37-year-old man who developed SAT 23 days after receiving the second dose of Pfizer BioNTech's COVID-19 mRNA vaccine.Research design and study sample: Due to neck pain and an elevated body temperature (up to 38.2°C), a 37-year-old male subject presented for examination 23 days after receiving the second Pfizer BioNTech mRNA vaccine against SARS-CoV-2 viral infection. The patient denied ever having an autoimmune disease or any other disease. Painful neck palpation and a firm, slightly enlarged thyroid gland with no surrounding lymphadenopathy were identified during the exam. The heart rate was 104 beats per minute. All of the remaining physical findings were normal.Data collection and/or Analysis: Data collected during the disease are integral to the medical record.Results: Hematology and biochemistry analyses at the initial and follow-up visits revealed minor leukocytosis, normocytic anaemia, and thrombocytosis, followed by a mild increase in lactate dehydrogenase and decreased iron levels. The patient's thyroid function and morphology had recovered entirely from post-vaccine SAT.Conclusions: Results from this study emphasise the need for healthcare professionals to promptly report any case of SAT related to COVID-19 vaccination. Further investigation is warranted to understand the immunopathogenesis of COVID-19-associated thyroiditis and the impact of COVID-19 immunization on this condition.


Subject(s)
COVID-19 Vaccines , COVID-19 , Thyroiditis, Subacute , Adult , Humans , Male , COVID-19/diagnosis , COVID-19/prevention & control , COVID-19 Vaccines/adverse effects , mRNA Vaccines , SARS-CoV-2 , Thyroiditis, Subacute/diagnosis , Thyroiditis, Subacute/drug therapy , Thyroiditis, Subacute/etiology , Vaccination/adverse effects
3.
Front Endocrinol (Lausanne) ; 14: 1241223, 2023.
Article in English | MEDLINE | ID: mdl-37842300

ABSTRACT

Background: Thyroid nodules (TN) are localized morphological changes in the thyroid gland and can be benign or malignant. Objective: The present study investigates the relationships between biochemical markers in serum (s) and their homologs in washout (w) after fine-needle aspiration biopsy (FNAB) of the TN of interest and their correlation with cytology specimen findings. Methods: We investigated the relationships between serum biochemical markers nitric oxide (NO), thyroglobulin (TG), and calcitonin (CT), their homologs in washout after FNAB of the TN of interest, and cytology findings of biopsy samples classified according to the Bethesda system for thyroid cytopathology in this study, which included 86 subjects. Results: Washout TG (TGw) level positively correlates with the cytology finding of the biopsy. A higher level of TGw correlates with higher categories of the Bethesda classification and indicates a higher malignant potential. The levels of serum NO (NOs), serum TG (TGs), serum CT (CTs), and washout CT (CTw) do not correlate with the cytology finding of the biopsy, and the higher levels of washout NO (NOw) correspond to the more suspicious ultrasound findings. Conclusion: The findings of our study suggest that TGw and NOw could be used as potential predictors of malignancy in TN.


Subject(s)
Thyroid Neoplasms , Thyroid Nodule , Humans , Thyroid Nodule/diagnosis , Thyroid Nodule/pathology , Thyroglobulin , Thyroid Neoplasms/diagnosis , Thyroid Neoplasms/pathology , Calcitonin , Nitric Oxide , Lymph Nodes/pathology , Biomarkers
4.
Curr Med Chem ; 2023 Oct 19.
Article in English | MEDLINE | ID: mdl-37855338

ABSTRACT

Type 2 diabetes mellitus (T2DM) has become a worldwide concern in recent years, primarily in highly developed Western societies. T2DM causes systemic complications, such as atherosclerotic heart disease, ischemic stroke, peripheral artery disease, kidney failure, and diabetes-related maculopathy and retinopathy. The growing number of T2DM patients and the treatment of long-term T2DM-related complications pressurize and exhaust public healthcare systems. As a result, strategies for combating T2DM and developing novel drugs are critical global public health requirements. Aside from preventive measures, which are still the most effective way to prevent T2DM, novel and highly effective therapies are emerging. In the spotlight of next-generation T2DM treatment, sodium-glucose co-transporter 2 (SGLT-2) inhibitors are promoted as the most efficient perspective therapy. SGLT-2 inhibitors (SGLT2i) include phlorizin derivatives, such as canagliflozin, dapagliflozin, empagliflozin, and ertugliflozin. SGLT-2, along with SGLT-1, is a member of the SGLT family of proteins that play a role in glucose absorption via active transport mediated by Na+ /K+ ATPase. SGLT-2 is only found in the kidney, specifically the proximal tubule, and is responsible for more than 90% glucose absorption. Inhibition of SGLT-2 reduces glucose absorption, and consequently increases urinary glucose excretion, decreasing blood glucose levels. Thus, the inhibition of SGLT-2 activity ultimately alleviates T2DM-related symptoms and prevents or delays systemic T2DM-associated chronic complications. This review aimed to provide a more detailed understanding of the effects of SGLT2i responsible for the acute improvement in blood glucose regulation, a prerequisite for T2DM-associated cardiovascular complications control.

5.
Front Endocrinol (Lausanne) ; 14: 1218320, 2023.
Article in English | MEDLINE | ID: mdl-37547301

ABSTRACT

After the metabolic syndrome and its components, thyroid disorders represent the most common endocrine disorders, with increasing prevalence in the last two decades. Thyroid dysfunctions are distinguished by hyperthyroidism, hypothyroidism, or inflammation (thyroiditis) of the thyroid gland, in addition to the presence of thyroid nodules that can be benign or malignant. Thyroid cancer is typically detected via an ultrasound (US)-guided fine-needle aspiration biopsy (FNAB) and cytological examination of the specimen. This approach has significant limitations due to the small sample size and inability to characterize follicular lesions adequately. Due to the rapid advancement of high-throughput molecular biology techniques, it is now possible to identify new biomarkers for thyroid neoplasms that can supplement traditional imaging modalities in postoperative surveillance and aid in the preoperative cytology examination of indeterminate or follicular lesions. Here, we review current knowledge regarding biomarkers that have been reliable in detecting thyroid neoplasms, making them valuable tools for assessing the efficacy of surgical procedures or adjunctive treatment after surgery. We are particularly interested in providing an up-to-date and systematic review of emerging biomarkers, such as mRNA and non-coding RNAs, that can potentially detect thyroid neoplasms in clinical settings. We discuss evidence for miRNA, lncRNA and circRNA dysregulation in several thyroid neoplasms and assess their potential for use as diagnostic and prognostic biomarkers.


Subject(s)
Thyroid Neoplasms , Thyroid Nodule , Humans , Sensitivity and Specificity , Thyroid Nodule/surgery , Thyroid Neoplasms/pathology , Biomarkers
6.
World J Diabetes ; 14(7): 958-976, 2023 Jul 15.
Article in English | MEDLINE | ID: mdl-37547582

ABSTRACT

Diabetes mellitus (DM) is a group of metabolic disorders defined by hyperglycemia induced by insulin resistance, inadequate insulin secretion, or excessive glucagon secretion. In 2021, the global prevalence of diabetes is anticipated to be 10.7% (537 million people). Noncoding RNAs (ncRNAs) appear to have an important role in the initiation and progression of DM, according to a growing body of research. The two major groups of ncRNAs implicated in diabetic disorders are miRNAs and long noncoding RNAs. miRNAs are single-stranded, short (17-25 nucleotides), ncRNAs that influence gene expression at the post-transcriptional level. Because DM has reached epidemic proportions worldwide, it appears that novel diagnostic and therapeutic strategies are required to identify and treat complications associated with these diseases efficiently. miRNAs are gaining attention as biomarkers for DM diagnosis and potential treatment due to their function in maintaining physiological homeostasis via gene expression regulation. In this review, we address the issue of the gradually expanding global prevalence of DM by presenting a complete and up-to-date synopsis of various regulatory miRNAs involved in these disorders. We hope this review will spark discussion about ncRNAs as prognostic biomarkers and therapeutic tools for DM. We examine and synthesize recent research that used novel, high-throughput technologies to uncover ncRNAs involved in DM, necessitating a systematic approach to examining and summarizing their roles and possible diagnostic and therapeutic uses.

7.
Front Endocrinol (Lausanne) ; 14: 1124613, 2023.
Article in English | MEDLINE | ID: mdl-36950696

ABSTRACT

Diabetes mellitus (DM) is on the rise, necessitating the development of novel therapeutic and preventive strategies to mitigate the disease's debilitating effects. Diabetic cardiomyopathy (DCMP) is among the leading causes of morbidity and mortality in diabetic patients globally. DCMP manifests as cardiomyocyte hypertrophy, apoptosis, and myocardial interstitial fibrosis before progressing to heart failure. Evidence suggests that non-coding RNAs, such as long non-coding RNAs (lncRNAs) and microRNAs (miRNAs), regulate diabetic cardiomyopathy-related processes such as insulin resistance, cardiomyocyte apoptosis and inflammation, emphasizing their heart-protective effects. This paper reviewed the literature data from animal and human studies on the non-trivial roles of miRNAs and lncRNAs in the context of DCMP in diabetes and demonstrated their future potential in DCMP treatment in diabetic patients.


Subject(s)
Diabetes Mellitus , Diabetic Cardiomyopathies , MicroRNAs , RNA, Long Noncoding , Animals , Humans , MicroRNAs/genetics , Diabetic Cardiomyopathies/pathology , RNA, Long Noncoding/genetics , Deoxycytidine Monophosphate , Myocardium/pathology , Fibrosis , Diabetes Mellitus/pathology
8.
Front Endocrinol (Lausanne) ; 14: 1142644, 2023.
Article in English | MEDLINE | ID: mdl-36843588

ABSTRACT

Introduction: Cardiovascular (CV) disorders are steadily increasing, making them the world's most prevalent health issue. New research highlights the importance of insulin-like growth factor 1 (IGF-1) for maintaining CV health. Methods: We searched PubMed and MEDLINE for English and non-English articles with English abstracts published between 1957 (when the first report on IGF-1 identification was published) and 2022. The top search terms were: IGF-1, cardiovascular disease, IGF-1 receptors, IGF-1 and microRNAs, therapeutic interventions with IGF-1, IGF-1 and diabetes, IGF-1 and cardiovascular disease. The search retrieved original peer-reviewed articles, which were further analyzed, focusing on the role of IGF-1 in pathophysiological conditions. We specifically focused on including the most recent findings published in the past five years. Results: IGF-1, an anabolic growth factor, regulates cell division, proliferation, and survival. In addition to its well-known growth-promoting and metabolic effects, there is mounting evidence that IGF-1 plays a specialized role in the complex activities that underpin CV function. IGF-1 promotes cardiac development and improves cardiac output, stroke volume, contractility, and ejection fraction. Furthermore, IGF-1 mediates many growth hormones (GH) actions. IGF-1 stimulates contractility and tissue remodeling in humans to improve heart function after myocardial infarction. IGF-1 also improves the lipid profile, lowers insulin levels, increases insulin sensitivity, and promotes glucose metabolism. These findings point to the intriguing medicinal potential of IGF-1. Human studies associate low serum levels of free or total IGF-1 with an increased risk of CV and cerebrovascular illness. Extensive human trials are being conducted to investigate the therapeutic efficacy and outcomes of IGF-1-related therapy. Discussion: We anticipate the development of novel IGF-1-related therapy with minimal side effects. This review discusses recent findings on the role of IGF-1 in the cardiovascular (CVD) system, including both normal and pathological conditions. We also discuss progress in therapeutic interventions aimed at targeting the IGF axis and provide insights into the epigenetic regulation of IGF-1 mediated by microRNAs.


Subject(s)
MicroRNAs , Myocardial Infarction , Humans , Insulin-Like Growth Factor I/metabolism , Epigenesis, Genetic , Heart/physiology , Cardiac Output
10.
Int J Biochem Cell Biol ; 154: 106346, 2023 01.
Article in English | MEDLINE | ID: mdl-36538984

ABSTRACT

Reactive species are highly-reactive enzymatically, or non-enzymatically produced compounds with important roles in physiological and pathophysiological cellular processes. Although reactive species represent an extensively researched topic in biomedical sciences, many aspects of their roles and functions remain unclear. This review aims to systematically summarize findings regarding the biochemical characteristics of various types of reactive species and specify the localization and mechanisms of their production in cells. In addition, we discuss the specific roles of free radicals in cellular physiology, focusing on the current lines of research that aim to identify the reactive oxygen species-initiated cascades of reactions resulting in adaptive or pathological cellular responses. Finally, we present recent findings regarding the therapeutic modulations of intracellular levels of reactive oxygen species, which may have substantial significance in developing novel agents for treating several diseases.


Subject(s)
Oxidative Stress , Reactive Nitrogen Species , Humans , Reactive Oxygen Species , Free Radicals/chemistry , Antioxidants/metabolism
11.
Curr Med Chem ; 30(17): 1922-1944, 2023.
Article in English | MEDLINE | ID: mdl-35927902

ABSTRACT

Metabolic diseases such as obesity, diabetes, dyslipidemia, and insulin resistance are characterized by glucose and lipid metabolism alterations and represent a global health problem. Many studies have established the crucial role of micro-ribonucleic acids (miRNAs) in controlling metabolic processes in various tissues. miRNAs are single- stranded, highly conserved non-coding RNAs containing 20-24 oligonucleotides that are expressed in a tissue-specific manner. miRNAs mainly interact through base pairing with 3' untranslated regions of target gene mRNAs to promote inhibition of their translation. miRNAs regulate the expression of as many as 30% of the human genes and have a role in crucial physiological processes such as human growth and development, cell proliferation, apoptosis, and metabolism. The number of miRNA molecules with a confirmed role in the pathogenesis of metabolic diseases is quickly expanding due to the availability of high-throughput methodologies for their identification. In this review, we present recent findings regarding the role of miRNAs as endocrine signaling molecules involved in the regulation of insulin production and fat metabolism. We discuss the potential of extracellular miRNAs present in biological fluids miRNAs as biomarkers for the prediction of diabetes and MetS. We also give an updated overview of therapeutic interventions based on antisense oligonucleotides and the CRISPR/Cas9 editing platform for manipulating levels of miRNAs involved in metabolic disorders.


Subject(s)
Diabetes Mellitus , Metabolic Diseases , MicroRNAs , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , Metabolic Diseases/genetics , Diabetes Mellitus/genetics , Obesity/metabolism , Lipid Metabolism
12.
Biomedicines ; 10(11)2022 Nov 18.
Article in English | MEDLINE | ID: mdl-36428537

ABSTRACT

(1) Background: Obesity is closely connected to the pathophysiology of cardiovascular diseases (CVDs). Excess fat accumulation is associated with metabolic malfunctions that disrupt cardiovascular homeostasis by activating inflammatory processes that recruit immune cells to the site of injury and reduce nitric oxide levels, resulting in increased blood pressure, endothelial cell migration, proliferation, and apoptosis. Adipose tissue produces adipokines, such as chemerin, that may alter immune responses, lipid metabolism, vascular homeostasis, and angiogenesis. (2) Methods: We performed PubMed and MEDLINE searches for articles with English abstracts published between 1997 (when the first report on chemerin identification was published) and 2022. The search retrieved original peer-reviewed articles analyzed in the context of the role of chemerin in CVDs, explicitly focusing on the most recent findings published in the past five years. (3) Results: This review summarizes up-to-date findings related to mechanisms of chemerin action, its role in the development and progression of CVDs, and novel strategies for developing chemerin-targeting therapeutic agents for treating CVDs. (4) Conclusions: Extensive evidence points to chemerin's role in vascular inflammation, angiogenesis, and blood pressure modulation, which opens up exciting perspectives for developing chemerin-targeting therapeutic agents for the treatment of CVDs.

13.
Curr Vasc Pharmacol ; 20(6): 465-474, 2022.
Article in English | MEDLINE | ID: mdl-35986545

ABSTRACT

Telomeres represent the ends of chromosomes, and they are composed of an extensive number of - TTAGGG nucleotide sequence repeats in humans. Telomeres prevent chromosome degradation, participate in stabilization, and regulate the DNA repair system. Inflammation and oxidative stress have been identified as important processes causing cardiovascular disease and accelerating telomere shortening rate. This review investigates the link between telomere length and pathological vascular conditions from experimental and human studies. Also, we discuss pharmacological treatments affecting telomeres and telomerase activity.


Subject(s)
Cardiovascular Diseases , Telomerase , Humans , Telomerase/genetics , Telomerase/metabolism , Cardiovascular Diseases/diagnosis , Cardiovascular Diseases/drug therapy , Cardiovascular Diseases/genetics , Risk Factors , Telomere/genetics , Telomere/metabolism , Heart Disease Risk Factors
14.
Front Endocrinol (Lausanne) ; 13: 1092837, 2022.
Article in English | MEDLINE | ID: mdl-36686463

ABSTRACT

An imbalance between pro-oxidative and antioxidative cellular mechanisms is oxidative stress (OxS) which may be systemic or organ-specific. Although OxS is a consequence of normal body and organ physiology, severely impaired oxidative homeostasis results in DNA hydroxylation, protein denaturation, lipid peroxidation, and apoptosis, ultimately compromising cells' function and viability. The thyroid gland is an organ that exhibits both oxidative and antioxidative processes. In terms of OxS severity, the thyroid gland's response could be physiological (i.e. hormone production and secretion) or pathological (i.e. development of diseases, such as goitre, thyroid cancer, or thyroiditis). Protective nutritional antioxidants may benefit defensive antioxidative systems in resolving pro-oxidative dominance and redox imbalance, preventing or delaying chronic thyroid diseases. This review provides information on nutritional antioxidants and their protective roles against impaired redox homeostasis in various thyroid pathologies. We also review novel findings related to the connection between the thyroid gland and gut microbiome and analyze the effects of probiotics with antioxidant properties on thyroid diseases.


Subject(s)
Antioxidants , Thyroid Diseases , Humans , Antioxidants/metabolism , Oxidative Stress/physiology , Oxidation-Reduction
15.
Front Endocrinol (Lausanne) ; 13: 1084656, 2022.
Article in English | MEDLINE | ID: mdl-36743910

ABSTRACT

MicroRNAs (miRNAs) are critical regulators of gene expression in healthy and diseased states, and numerous studies have established their tremendous potential as a tool for improving the diagnosis of Type 2 Diabetes Mellitus (T2D) and its comorbidities. In this regard, we computationally identify novel top-ranked hub miRNAs that might be involved in T2D. We accomplish this via two strategies: 1) by ranking miRNAs based on the number of T2D differentially expressed genes (DEGs) they target, and 2) using only the common DEGs between T2D and its comorbidity, Alzheimer's disease (AD) to predict and rank miRNA. Then classifier models are built using the DEGs targeted by each miRNA as features. Here, we show the T2D DEGs targeted by hsa-mir-1-3p, hsa-mir-16-5p, hsa-mir-124-3p, hsa-mir-34a-5p, hsa-let-7b-5p, hsa-mir-155-5p, hsa-mir-107, hsa-mir-27a-3p, hsa-mir-129-2-3p, and hsa-mir-146a-5p are capable of distinguishing T2D samples from the controls, which serves as a measure of confidence in the miRNAs' potential role in T2D progression. Moreover, for the second strategy, we show other critical miRNAs can be made apparent through the disease's comorbidities, and in this case, overall, the hsa-mir-103a-3p models work well for all the datasets, especially in T2D, while the hsa-mir-124-3p models achieved the best scores for the AD datasets. To the best of our knowledge, this is the first study that used predicted miRNAs to determine the features that can separate the diseased samples (T2D or AD) from the normal ones, instead of using conventional non-biology-based feature selection methods.


Subject(s)
Alzheimer Disease , Diabetes Mellitus, Type 2 , MicroRNAs , Humans , Alzheimer Disease/diagnosis , Alzheimer Disease/epidemiology , Alzheimer Disease/genetics , Comorbidity , Diabetes Mellitus, Type 2/epidemiology , Diabetes Mellitus, Type 2/genetics , Machine Learning , MicroRNAs/genetics , MicroRNAs/metabolism
16.
Chem Biol Interact ; 311: 108787, 2019 Sep 25.
Article in English | MEDLINE | ID: mdl-31400341

ABSTRACT

Antipsychotic drugs interfere with the antioxidant defense system provoking complex and often toxicological effects. Here we examined differences in plasma albumin reduced free thiol (SH) group content and its reactivity as a consequence of clozapine (CLZ) and ziprasidone (ZIP) binding. Chronic administration of CLZ reduced, whereas treatment with ZIP increased albumin-SH content in rats. Regardless of the ratio of stearic acid (SA) bound to protein, in vitro binding of ZIP to human serum albumin (HSA) increased both the SH group level and reactivity. In contrast, the effect of CLZ on HSA-SH reactivity was dependent on HSA to SA molar ratio. CLZ binding was accompanied by an increase in HSA-SH reactivity in samples with normal, but a reduction of its reactivity level with higher SA/HSA ratio, compared to drug-free samples. We demonstrate by steady-state fluorescence quenching studies that an increase in SA binding to HSA is associated with a significant reduction of binding constant for both antipsychotics. In addition, this is the first report of quantitative characterization of ZIP binding to HSA. Our findings suggest that albumin-SH content and reactivity is modulated by ZIP towards an increased antioxidant defense capacity in circulation, as opposed to CLZ, which can contribute to the safer, more effective treatment of schizophrenia.


Subject(s)
Clozapine/chemistry , Fatty Acids/chemistry , Piperazines/chemistry , Serum Albumin/chemistry , Sulfhydryl Compounds/chemistry , Thiazoles/chemistry , Animals , Clozapine/metabolism , Fatty Acids/metabolism , Humans , Male , Piperazines/metabolism , Protein Binding , Rats , Rats, Wistar , Serum Albumin/metabolism , Spectrometry, Fluorescence , Spectrophotometry , Sulfhydryl Compounds/analysis , Sulfhydryl Compounds/metabolism , Thiazoles/metabolism
17.
mBio ; 6(4)2015 Aug 25.
Article in English | MEDLINE | ID: mdl-26307168

ABSTRACT

UNLABELLED: Repeated extragenic palindromes (REPs) in the enterobacterial genomes are usually composed of individual palindromic units separated by linker sequences. A total of 355 annotated REPs are distributed along the Escherichia coli genome. RNA sequence (RNAseq) analysis showed that almost 80% of the REPs in E. coli are transcribed. The DNA sequence of REP325 showed that it is a cluster of six repeats, each with two palindromic units capable of forming cruciform structures in supercoiled DNA. Here, we report that components of the REP325 element and at least one of its RNA products play a role in bacterial nucleoid DNA condensation. These RNA not only are present in the purified nucleoid but bind to the bacterial nucleoid-associated HU protein as revealed by RNA IP followed by microarray analysis (RIP-Chip) assays. Deletion of REP325 resulted in a dramatic increase of the nucleoid size as observed using transmission electron microscopy (TEM), and expression of one of the REP325 RNAs, nucleoid-associated noncoding RNA 4 (naRNA4), from a plasmid restored the wild-type condensed structure. Independently, chromosome conformation capture (3C) analysis demonstrated physical connections among various REP elements around the chromosome. These connections are dependent in some way upon the presence of HU and the REP325 element; deletion of HU genes and/or the REP325 element removed the connections. Finally, naRNA4 together with HU condensed DNA in vitro by connecting REP325 or other DNA sequences that contain cruciform structures in a pairwise manner as observed by atomic force microscopy (AFM). On the basis of our results, we propose molecular models to explain connections of remote cruciform structures mediated by HU and naRNA4. IMPORTANCE: Nucleoid organization in bacteria is being studied extensively, and several models have been proposed. However, the molecular nature of the structural organization is not well understood. Here we characterized the role of a novel nucleoid-associated noncoding RNA, naRNA4, in nucleoid structures both in vivo and in vitro. We propose models to explain how naRNA4 together with nucleoid-associated protein HU connects remote DNA elements for nucleoid condensation. We present the first evidence of a noncoding RNA together with a nucleoid-associated protein directly condensing nucleoid DNA.


Subject(s)
Bacterial Proteins/genetics , Chromosomes, Bacterial/genetics , DNA-Binding Proteins/genetics , Escherichia coli/genetics , RNA, Untranslated/genetics , DNA, Bacterial/genetics , DNA, Superhelical , Inverted Repeat Sequences , Microarray Analysis , Microscopy, Atomic Force , Models, Molecular , Sequence Analysis, RNA/methods
18.
J Bacteriol ; 194(22): 6046-55, 2012 Nov.
Article in English | MEDLINE | ID: mdl-22942248

ABSTRACT

Some unidentified RNA molecules, together with the nucleoid protein HU, were suggested to be involved in the nucleoid structure of Escherichia coli. HU is a conserved protein known for its role in binding to DNA and maintaining negative supercoils in the latter. HU also binds to a few RNAs, but the full spectrum of its binding targets in the cell is not known. To understand any interaction of HU with RNA in the nucleoid structure, we immunoprecipitated potential HU-RNA complexes from cells and examined bound RNAs by hybridization to whole-genome tiling arrays. We identified associations between HU and 10 new intragenic and intergenic noncoding RNAs (ncRNAs), 2 of which are homologous to the annotated bacterial interspersed mosaic elements (BIMEs) and boxC DNA repeat elements. We confirmed direct binding of HU to BIME RNA in vitro. We also studied the nucleoid shape of HU and two of the ncRNA mutants (nc1 and nc5) by transmission electron microscopy and showed that both HU and the two ncRNAs play a role in nucleoid morphology. We propose that at least two of the ncRNA species complex with HU and help the formation or maintenance of the architecture of the E. coli chromosome. We also observed binding of HU with rRNA and tRNA segments, a few small RNAs, and a distinct small set of mRNAs, although the significance, if any, of these associations is not known.


Subject(s)
DNA-Binding Proteins/metabolism , Escherichia coli Proteins/metabolism , Escherichia coli/metabolism , Gene Expression Regulation, Bacterial/physiology , RNA, Bacterial/metabolism , RNA, Untranslated/metabolism , Base Sequence , DNA, Bacterial , DNA-Binding Proteins/genetics , Escherichia coli/genetics , Escherichia coli Proteins/genetics , Lab-On-A-Chip Devices , Protein Array Analysis , Protein Binding , RNA Folding , RNA, Bacterial/genetics
19.
Biochim Biophys Acta ; 1819(7): 830-5, 2012 Jul.
Article in English | MEDLINE | ID: mdl-22387214

ABSTRACT

In contrast to organized hierarchical structure of eukaryotic chromosome, bacterial chromosomes are believed not to have such structures. The genomes of bacteria are condensed into a compact structure called the nucleoid. Among many architectural, histone-like proteins which associate with the chromosomal DNA is HU which is implicated in folding DNA into a compact structure by bending and wrapping DNA. Unlike the majority of other histone-like proteins, HU is highly conserved in eubacteria and unique in its ability to bind RNA. Furthermore, an HU mutation profoundly alters the cellular transcription profile and consequently has global effects on physiology and the lifestyle of E. coli. Here we provide a short overview of the mechanisms by which the nucleoid is organized into different topological domains. We propose that HU is a major player in creating domain-specific superhelicities and thus influences the transcription profile from the constituent promoters. This article is part of a Special Issue entitled: Chromatin in time and space.


Subject(s)
Chromosomes, Bacterial/genetics , Escherichia coli/genetics , Chromosomes, Bacterial/ultrastructure , DNA Packaging , DNA, Bacterial/genetics , DNA, Bacterial/ultrastructure , DNA, Superhelical/genetics , DNA, Superhelical/ultrastructure , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/physiology , Escherichia coli/ultrastructure , Escherichia coli Proteins/metabolism , Escherichia coli Proteins/physiology , Insulator Elements , Nucleic Acid Conformation , RNA, Bacterial/genetics
20.
Methods Mol Biol ; 642: 95-103, 2010.
Article in English | MEDLINE | ID: mdl-20401588

ABSTRACT

Bacteria, in common with other organisms that take advantage of aerobic respiration, generate and accumulate reactive oxygen species (ROS) that damage DNA, fatty acids, and proteins. In addition, intracellular pathogens like Salmonella enterica are exposed to an oxidate burst produced by host macrophages. The relative ability of aerobically growing bacteria to withstand oxidative stress and eliminate ROS has a large impact of their fitness in vitro and in vivo. Methods are described here to measure the viability and relative fitness of bacteria in the presence of hydrogen peroxide. A protocol for the determination of catalase activity, an important part of the ROS detoxification process, is also described.


Subject(s)
Catalase/metabolism , Drug Resistance, Multiple, Bacterial/drug effects , Hydrogen Peroxide/pharmacology , Anti-Bacterial Agents/pharmacology , Reactive Oxygen Species/metabolism , Salmonella enterica/drug effects , Salmonella enterica/enzymology
SELECTION OF CITATIONS
SEARCH DETAIL
...